对我们所有的毕业生和即将到来的CGCA成员来说,最热烈的问候!我将在最近的晚宴上见到你们中的一些人,在本期其他地方的Colin Kerr的文章中,我们将听到更多的声音。这是我将记住的事件,并且出于所有正确的原因!当我为IE最新一期的IE写这篇注释时,我对人工智能(AI)的复兴公共兴趣(AI)相当介意,这次是由Chatgpt(其变体和竞争者)体现的特定机器智能形式驱动的。的确,这不仅是因为人造和生物智能之间的相似之处通常在我的思想中,还因为起草文本的过程(这种活动被隐含地理解为只能由人类才能进行的一种创造过程),现在可以说是开始体验海洋变化的。很明显,有一个很小但并不重要的,数量的创意作家,他们正在与可以总结,重塑甚至对书面文本发表评论的软件代理合作起草文章。以这种方式使用代理似乎范围从规划整个文章到词缩短单个段落;撰写科学文章的协作方法可能会遵循1。可以公平地说,尽管在所谓的生成形式的机器学习中取得了明显进展 - 那些经过培训的机器学习训练的新示例的培训 - 以及在大语言模型(LLMS)中应用这些原理的早期芽,但很少有人可能会预见到这一点的速度是我们的速度。据估计,与Chatgpt互动的人数在公开发布的两个月内越过了1亿个大关。培训此类LLM的工程专长是强大的。在法国公共赠款的协助下,数百名研究人员的合作开发和发布了大型语言模型,也许鲜为人知。 Bloom接受了刚过1.6多个文本的语料库培训,涵盖了46种人类语言和13种编程语言,并以约25吨的25吨Co 2发射器的范围(当时非常有效的计算小时)(以及非常有效的Jean Zay Hartware 2)进行培训。碳撞击估计比GPT3.5(是当前使用最广泛使用的Chatgpt版本的LLM)的碳效果相当小,部分原因是使用了法国网格(57 GCO 2 EQ/kWh)。数据清洁,模型体系结构和培训绽放的基本原理使您着迷3。
在演讲中,我将介绍我的实验室在人工智能、应用机器学习和数据挖掘方面的最新进展,以打击网络和社交媒体平台上的恶意行为者(傀儡、逃避禁令者等)和危险内容(错误信息、仇恨等)。我的愿景是为每个人创建一个值得信赖的在线生态系统,并创建下一代促进健康、公平和安全的社会意识方法。总的来说,在我的研究中,我创建了新颖的图形、内容(NLP、多模态)和对抗性机器学习方法,利用 TB 级数据来检测、预测和缓解在线威胁。我的跨学科研究创新了社会技术解决方案,这些解决方案是我通过将计算机科学与社会科学理论相结合而实现的。我也热衷于将我的研究付诸实践——我实验室的模型已经部署在 Flipkart 上,影响了 Twitter 的 Birdwatch,现在正在部署在维基百科上。我的研究开启了范式转变,从当前缓慢而被动的应对网络危害的方法转向敏捷、主动和全社会的解决方案。我的演讲将概述我研究的四个重点:(1)跨平台、语言和模式检测有害内容和恶意行为者:我的研究超越了研究“推特上的英文文本”的标准实践,旨在解决解决跨平台(Micallef 等人,2022 年)、语言(Verma 等人,2022b 年)和模式(Verma 等人,2022b、c)(图像、视频、文本)根深蒂固的基本问题的巨大挑战。 (2) 通过预测未来的恶意活动,增强检测模型对敌对行为者的鲁棒性:我的工作是通过开发第一种对抗性学习技术来突破界限,以主动预测对手行为来欺骗检测模型。接下来,我们提高模型对操纵的鲁棒性。我的实验室调查了部署在一些最大平台上的模型的漏洞:Facebook 的 TIES 坏人检测器(He、Ahamad 和 Kumar 2021)、Twitter 的 Birdwatch 错误信息检测器(Mujumdar 和 Kumar 2021)和维基百科的禁令逃避(Niverthi、Verma 和 Kumar 2022)。(3) 归因于有害内容的影响和推荐系统的作用:我的实验室创建了数据驱动的技术来确定网络危害对
此次探险队配备了最先进的萨博剑齿虎自主水下航行器 (AUV),这种航行器能够部署到 3,000 米深的水下,并装有一系列传感器,以便定位、成像、拍摄和扫描“坚忍号”沉船。探险队科学团队汇集了海冰科学家、海洋学家、气象学家和海洋工程师,以研究南极海冰,进一步了解周围威德尔海和南大洋的环境变化,同时还提供帮助寻找“坚忍号”沉船和加深对船冰相互作用的理解的运行数据。此外,从这些科学研究中收集的数据将有助于改进未来的海冰导航系统。本报告总结了开展的科学研究,展示了初步结果,并列出了创建的数据集及其访问方法。开发新的海冰信息系统 Endurance22 是当今在海冰中航行和有效工作的作战能力的案例研究,并为下一代冰信息系统定义了基准。今天,创建海冰图表仍然是一项非常繁琐且耗时的工作。特别是在南极洲,几乎没有海冰信息来支持航运作业,因为没有专门的国家冰服务机构负责(尽管挪威和美国冰服务机构每周提供冰
量子计算是计算机技术的一个分支,它使用量子理论的原理来处理信息。与传统的二进制计算机不同,后者使用的比特只能是 1 或 0,而量子计算机使用的量子比特可以同时存在于多个状态。这种称为叠加的特性允许进行更复杂的计算,并成倍增加处理能力。云计算是一种通过互联网提供数据存储、服务器、网络和数据库等服务的模型。量子云计算结合了这两种技术,使人们无需拥有一台量子计算机就可以访问强大的量子计算机。IBM 是目前唯一一家提供云量子计算设施的公司,提供免费使用的 5 量子比特机器。云计算和量子计算之间的关系是协同作用。用户无需拥有量子计算机,就可以利用基于云的量子处理来完成复杂的任务,例如解码化合物、优化供应链和管理财务风险。此外,云量子计算通过处理更复杂的数字来实现更安全的加密方法。云量子计算的应用包括教育,它可以用来向学生传授量子计算概念。借助云量子计算机,量子物理教育将变得更加容易。学生无需物理设备即可学习和进行实验。该领域具有巨大的发展潜力,研究人员可以利用云量子计算机来测试理论和开展研究。马丁·雷诺兹 (Martin Reynolds) 表示,由于特定的房间条件和需要新的编程技能,实施基于云的量子计算具有挑战性。IT 团队必须开发专业知识来微调算法和硬件。尽管面临挑战,但云提供商将成为首批提供量子即服务的提供商之一,为开发人员提供访问量子处理的方法。如果实际问题能够得到解决,量子云计算可能会产生与人工智能类似的深远影响。量子力学支持开发创新应用程序,包括量子算法的实施和测试。研究人员可以利用基于云的资源进行实验、测试理论和比较架构。此外,基于云的平台有助于创建向人们介绍量子概念的游戏。在数字化转型领域,可以使用基于云的量子资源处理和预测数 TB 的大数据。 qBraid Lab、Quandela Cloud、Xanadu Quantum Cloud、Rigetti Computing 的 Forest、Microsoft 的 LIQUi| 和 IBM Q Experience 等基于云的平台提供对各种量子设备和模拟器的访问。这些平台提供编程语言、开发框架和示例算法的工具。一些值得注意的基于云的量子资源包括:* qBraid Lab:一个提供软件工具和访问 IBM、Amazon Braket、Xanadu、OQC、QuEra、Rigetti 和 IonQ 量子硬件的平台。 * Quandela Cloud:第一台可通过 Perceval 脚本语言访问的欧洲光子量子计算机。 * Xanadu Quantum Cloud:一个基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:一个用于量子计算的工具套件,具有编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:一个用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个 transmon 量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q 网络提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两款硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特传输处理器)和 QX(荷兰国家超级计算机 Cartesius 上的量子模拟器后端,最多可模拟 31 个量子比特)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的协作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。欧洲首款可通过 Perceval 脚本语言访问的光子量子计算机。 * Xanadu Quantum Cloud:基于云的平台,可访问三台完全可编程的光子量子计算机。 * Rigetti Computing 的 Forest:量子计算工具套件,包含编程语言、开发工具和示例算法。 * Microsoft 的 LIQUi|:量子计算软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:通过基于 Python 的 Qiskit 框架或图形界面提供量子硬件和 HPC 模拟器访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。 Qutech 是欧洲首个为两个硬件芯片提供基于云的量子计算的平台。 Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。和示例算法。 * 微软的 LIQUi|:一种用于量子计算的软件架构和工具套件,提供编程语言、优化和调度算法以及量子模拟器。 * IBM Q Experience:一个通过基于 Python 的 Qiskit 框架或图形界面提供对量子硬件和 HPC 模拟器的访问的平台。这些平台提供各种模拟器和量子设备,包括多个量子比特处理器、5 量子比特和 16 量子比特可公开访问的设备,以及通过 IBM Q Network 提供的最多 65 量子比特的设备。Qutech 是欧洲第一个为两个硬件芯片提供基于云的量子计算的平台。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,它们托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问设备。这可以促进量子计算领域的合作和创新。一些著名的基于云的量子计算平台包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。Quantum Inspire 平台提供对完全可编程的 2 量子比特电子自旋量子处理器(称为 Spin-2)的访问,该处理器由两个单电子自旋量子比特组成,托管在由同位素纯化的 28Si 制成的双量子点中。它还提供对 Starmon-5(配置为 X 设置的 5 量子比特 transmon 处理器)和 QX(在荷兰国家超级计算机 Cartesius 上具有最多 31 个量子比特模拟的量子模拟器后端)的访问。用户可以通过图形用户界面或基于 Python 的 Quantum Inspire SDK(支持 projectQ 和 Qiskit 框架)创建基于电路的量子算法。相比之下,Amazon Braket 提供对 IonQ、Rigetti、Xanadu、QuEra 和 Oxford Quantum Circuits 量子计算机的访问,而 QC Ware 的 Forge 提供对 D-Wave 硬件以及 Google 和 IBM 模拟器的访问。本文讨论了基于云的量子计算,这是一种能够通过互联网访问量子计算机的技术。基于云的方法允许开发人员和研究人员使用来自不同供应商的量子硬件和模拟器,而无需物理访问这些设备。这可以促进量子计算领域的合作和创新。一些基于云的量子计算平台的著名例子包括 IBM Q Experience、Quantum Inspire 和 QC Ware Forge。这些平台为用户提供了一系列用于探索和开发量子算法和应用程序的工具和资源。本文还提到了几篇与基于云的量子计算相关的研究论文和出版物,突显了人们对这一领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。这些平台为用户提供了一系列工具和资源,用于探索和开发量子算法和应用。文章还提到了几篇与基于云的量子计算相关的研究论文和出版物,凸显了人们对该领域日益增长的兴趣。
在当今快节奏的世界中,人工智能已成为一个广泛讨论的话题,它已从科幻小说中的概念转变为影响我们日常生活的现实。人们对人工智能及其将想象力融入日常生活的能力着迷。本文旨在探讨人工智能的概念、发展历程、各种类型的人工智能、训练模型、优势以及其多样化应用的案例。人工智能是指开发能够执行需要人类智能的任务的计算机系统。它通过机器学习、自然语言处理、计算机视觉和机器人技术等技术,帮助处理大量数据、识别模式并根据收集的信息做出决策。人工智能涵盖学习、推理、感知、解决问题、数据分析和语言理解等能力。人工智能的最终目标是创造出能够模拟人类能力并以更高的效率和精度执行各种任务的机器。人工智能领域有可能彻底改变我们日常生活的各个方面,例如虚拟个人助理、自动驾驶汽车、医疗诊断和治疗、推荐系统和欺诈检测。人工智能已融入众多行业和日常生活,展现出其多样化的应用。Siri、Google Assistant 和 Amazon Alexa 等虚拟个人助理利用人工智能进行自然语言处理和机器学习,从而提供更精准的响应。自动驾驶汽车使用人工智能算法分析传感数据,并进行实时驾驶决策。医疗保健专业人员利用 IBM Watson for Health 和 Google DeepMind 等平台,将人工智能算法应用于医疗诊断和治疗。Netflix、Amazon 和 Spotify 等在线平台利用人工智能根据用户行为和偏好提供个性化推荐。金融机构利用人工智能通过分析数据的算法实时检测欺诈活动。人工智能 (AI) 是一个复杂的决策过程,在某些领域超越了人类的能力。人工智能机器的一个关键特性是重复学习,这使它们能够从现实生活中的事件中学习并与人类互动。这种学习过程被称为机器学习,是人工智能的一个子领域。由于缺乏准确性和热情,人类难以完成重复性任务。相比之下,人工智能系统在其任务中表现出卓越的准确性。人工智能在医疗保健、零售、制造和银行等各个领域都有广泛的应用。人工智能主要分为两类:弱人工智能(Narrow AI)和强人工智能(General AI)。弱人工智能是指专为特定任务或特定范围的任务而设计的人工智能系统。这些系统在其指定领域表现出色,但缺乏广泛的认知能力。其特征包括专业化能力、应用范围有限以及缺乏意识。狭义人工智能的例子包括虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。而广义人工智能则旨在全面模拟人类智能,包括推理、解决问题、学习和适应新情况的能力。广义人工智能的特征包括类似人类的认知能力、适应性以及在各种任务和领域中概括知识的能力。目前,狭义人工智能是人工智能最常用的形式,广泛应用于各行各业。狭义人工智能的例子包括Siri和Alexa等虚拟个人助理、推荐系统、图像识别软件、聊天机器人和自动驾驶汽车。随着研究人员不断突破人工智能的界限,他们提出了不同级别的人工智能能力。广义人工智能就是这样一个概念,它被认为具有自我意识、意识和主观体验。然而,达到这一水平仍然是一个理论挑战。广义人工智能的发展仍是一个持续研究的领域。另一个极端是超级人工智能,也称为人工智能超级智能 (ASI)。这种类型的人工智能几乎在各个方面都超越了人类智能,并对社会和人类的未来产生重大影响。超级人工智能的特点包括认知优势、快速学习和适应能力,这些特点可以推动各个领域的快速发展。超级人工智能的发展也引发了人们对其潜在社会影响的担忧,包括与控制相关的风险、与人类价值观的契合度以及对人类生存的威胁。尽管目前还处于理论阶段,但研究人员正在积极探索其发展带来的影响和挑战。相比之下,反应式机器是最基本的人工智能类型,纯粹是反应式的。它们不会形成记忆,也不会利用过去的经验来做出决策。例如,IBM 的“深蓝”国际象棋超级计算机在 1997 年击败了国际象棋大师加里·卡斯帕罗夫。这些机器可以感知世界并采取行动,而无需存储任何记忆。而记忆有限的机器可以回顾过去,并根据观察结果做出决策。一个常见的例子是自动驾驶汽车,它会观察其他车辆的速度和方向,并相应地进行调整。这需要在特定时间内监控车辆的驾驶情况。这些信息不会存储在机器的经验库中。基于心智理论的机器可以理解人类的信念、情绪、期望等,并做出情绪化的反应。索菲亚就是这类人工智能的典型例子,尽管该领域的研究仍在进行中。换句话说,先进的机器正在被开发,它们对世界及其实体(包括人类和动物)有着更深入的理解。这些机器将能够回答简单的“假设”问题,并具备同理心,从而更好地理解他人的观点。更重要的飞跃是创造出具有自我意识的机器,它们能够意识到自身身份并预测他人的感受。这种智能水平将代表人工智能研究的重大突破。人工智能 (AI) 的工作原理是通过算法、计算能力和来自各种来源的数据来利用海量数据。该过程包括收集相关数据,对其进行预处理以确保其清洁度和结构化,根据任务需求选择合适的算法,使用标记或未标记数据训练模型,评估其性能,并将其部署到生产环境中执行实际任务。人工智能功能广泛而多样,涵盖各种随时间推移进行调整和改进的技术。这使得模型能够通过持续学习在动态环境中保持相关性和准确性。在线学习、迁移学习和强化学习等技术有助于从经验和反馈中获取新知识。在推理过程中,经过训练的人工智能模型会运用其学习到的模式和表征,对新数据进行预测或决策。此过程包括将输入数据输入模型,并根据模型的内部工作原理获得输出预测或分类。人工智能系统依靠数据、算法和计算能力从经验中学习、做出决策并自主执行任务。人工智能系统的具体功能取决于其架构、算法以及其设计目标任务的性质。人工智能的应用领域广泛,已被广泛应用于医疗保健、金融、零售、制造、交通运输、教育、市场营销、游戏、安全和自然语言处理等各个行业。这些应用包括诊断、患者预后预测、个性化治疗方案、信用评分、欺诈检测、客户服务、需求预测、供应链优化、智能游戏角色、面部识别、入侵检测、机器翻译、情绪分析等等。人工智能的未来很可能涉及机器学习、自然语言处理和计算机视觉的进一步发展,从而为各种应用和行业带来功能日益强大、集成度更高的系统。人工智能的潜在增长领域包括医疗保健、金融、交通、客户服务、刑事司法决策、招聘、教育以及其他涉及道德考虑的敏感领域。人工智能 (AI) 是一种使计算机和机器能够模拟人类学习、解决问题和决策等能力的技术。AI 应用程序和设备可以识别物体、理解人类语言、从新信息中学习,并向用户和专家提供建议。AI 研究的最新焦点是生成式 AI,它可以创建文本、图像和视频等原创内容。生成式 AI 依赖于机器学习 (ML) 和深度学习技术。深度学习彻底改变了机器学习领域,它使算法能够在无需人工干预的情况下从大量未标记数据集中进行预测。这项技术尤其适用于自然语言处理、计算机视觉以及其他需要在海量数据中识别复杂模式和关系的任务。因此,深度学习为我们日常生活中的大多数 AI 应用提供支持。深度学习还支持多种先进技术,包括半监督学习,它结合了监督学习和非监督学习,可以在标记数据和未标记数据上训练模型。此外,自监督学习从非结构化数据中生成隐式标签,而强化学习则通过反复试验和奖励函数进行学习。迁移学习允许将从一个任务或数据集获得的知识应用于另一个相关任务或不同的数据集。生成式人工智能是指能够根据用户的提示或请求创建复杂原始内容(例如文本、图像、视频或音频)的深度学习模型。这些模型对其训练数据的简化表示进行编码,然后从该表示中提取数据以生成与原始数据相似但不完全相同的新作品。生成式人工智能的最新进展促成了复杂的深度学习模型类型的发展,包括变分自编码器 (VAE)、扩散模型和变换器。变换器是许多备受瞩目的生成式人工智能工具的核心,例如 ChatGPT 和 GPT-4、Copilot、BERT、Bard 和 Midjourney。生成式人工智能的运作分为三个阶段:训练、调整和生成。该流程始于基础模型,这是一种深度学习模型,可作为多种不同类型生成式人工智能应用的基础。基础模型可以针对特定任务进行定制,例如文本或图像生成,并且通常基于海量数据进行训练。深度学习算法处理海量非结构化数据(TB级或PB级的文本、图像或视频),并使用基础模型根据提示自主生成内容。这一训练过程计算密集、耗时且成本高昂,需要数千个GPU和数周的处理时间,总计数百万美元。像Meta的Llama-2这样的开源基础模型项目使开发人员能够绕过这一步骤及其成本。为了针对特定的内容生成任务对模型进行微调,开发者可以使用诸如标记数据微调或人工反馈强化学习 (RLHF) 等技术。这需要向模型输入特定于应用的问题或提示以及正确答案。开发者定期评估其生成式 AI 应用的输出,进一步调整模型以提高准确性或相关性。另一种方法是检索增强生成 (RAG),它通过整合训练数据以外的相关来源来扩展基础模型,从而优化参数以提高准确性或相关性。生成式 AI 为各行各业和应用带来了诸多优势,包括重复性任务的自动化、更快地从数据中获取洞察、增强决策能力、减少人为错误、全天候可用以及降低物理风险。AI 可以自动化日常任务,使人类能够专注于创造性工作。它能够做出更快、更准确的预测和可靠的决策,使其成为决策支持或全自动决策的理想选择。AI 通过引导人们完成流程、标记潜在错误以及在无人干预的情况下自动执行任务来减少人为错误,尤其是在医疗保健等精准度至关重要的行业。随着机器学习算法接触更多数据并从经验中学习,其准确性不断提高,错误也随之减少。人工智能始终在线,全天候提供一致的结果。人工智能可以通过使用聊天机器人或虚拟助手来简化客户服务或支持的人员需求。它还可以简化生产流程,保持一致的产出水平,并自动执行那些可能危及人类工人的危险任务。例如,自动驾驶汽车可以降低乘客受伤风险。人工智能的实际应用包括通过聊天机器人改善客户服务、检测欺诈交易、个性化客户体验以及简化招聘流程。此外,人工智能代码生成工具可以加速应用程序开发,而预测性维护模型可以防止设备故障和停机。人工智能的快速应用带来了诸多好处,但也带来了挑战和风险。人工智能系统依赖的数据集可能容易受到篡改、偏见或网络攻击,从而损害其完整性和安全性。为了降低这些风险,组织必须在从开发到部署的整个人工智能生命周期中保护数据完整性。威胁行为者会针对人工智能模型进行盗窃、逆向工程或未经授权的操作,这可能会损害模型的架构、权重或参数。此外,还存在诸如模型漂移、偏差和治理结构崩溃等运营风险。如果不加以解决,这些风险可能会导致系统故障和网络安全漏洞,而威胁行为者可能会利用这些漏洞。为了优先考虑安全和道德,组织必须开发透明、可解释、公平的人工智能系统,包容、稳健、安全且可问责。人工智能伦理是一个多学科领域,旨在优化人工智能的有益影响,同时降低风险。人工智能伦理的原则包括可解释性、公平性和透明性。可解释的人工智能使人类用户能够解读算法产生的结果和输出。公平性和包容性要求在数据收集和模型设计过程中最大限度地减少算法偏差。建立多元化的团队对于创建包容性的人工智能系统至关重要。稳健的人工智能能够处理异常情况而不会造成损害,能够抵御有意和无意的干扰,并防止漏洞。问责制要求对人工智能的开发、部署和结果建立明确的责任和治理结构。与人工智能伦理相关的共同价值观包括可解释性、公平性、包容性、稳健性、安全性、问责制、透明性和责任感。用户必须了解人工智能的开发方式、功能、优势和劣势。提高透明度可以为人工智能模型和服务的创建提供宝贵的见解。确保隐私和合规性至关重要,因为像《通用数据保护条例》(GDPR)这样的监管框架要求组织保护个人信息。这包括保护可能包含敏感数据的人工智能模型,并开发能够适应不断变化的法规的适应性系统。研究人员根据人工智能的复杂程度对其进行了分类:弱人工智能(狭义人工智能)执行特定任务,而强人工智能(通用人工智能,AGI)则具有理解、学习和应用知识处理各种任务的能力,超越人类智能。具有自我意识的人工智能系统的概念仍是一个有争议的话题。人工智能发展的关键里程碑包括:- 1950 年:艾伦·图灵出版了《计算机器与智能》,提出了“机器能思考吗?”的问题,并提出了图灵测试。- 1956 年:约翰·麦卡锡在达特茅斯学院的第一次人工智能会议上提出了“人工智能”一词。- 1967 年:弗兰克·罗森布拉特制造了 Mark 1 感知器,这是一台基于通过反复试验进行学习的神经网络的计算机。- 1980 年:使用反向传播算法的神经网络在人工智能开发中得到广泛应用。 1995年,斯图尔特·罗素和彼得·诺维格出版了《人工智能:一种现代方法》,这是一本关于人工智能的权威教科书,探讨了人工智能的四个潜在目标或定义。大约在同一时期,IBM的“深蓝”国际象棋系统在一场对决中击败了世界冠军加里·卡斯帕罗夫。大数据和云计算时代到来,使企业能够管理用于训练人工智能模型的大型数据资产。21世纪初,人工智能取得了重大进展,包括约翰·麦卡锡在其2004年的论文《什么是人工智能?》中对人工智能的定义。数据科学开始成为一门热门学科,IBM Watson击败了《危险边缘!》冠军肯·詹宁斯和布拉德·鲁特。2015年,百度的 Minwa 超级计算机使用卷积神经网络识别图像的准确率高于人类。同年,在 DeepMind 的 AlphaGo 程序击败世界围棋冠军李索孛后,谷歌以 4 亿美元收购了 DeepMind。2020 年代,大型语言模型 (LLM) 兴起,例如 OpenAI 的 ChatGPT,它们显著提高了人工智能性能和推动企业价值的潜力。生成式人工智能实践使深度学习模型能够在大型数据集上进行预训练。截至 2024 年,人工智能趋势表明它将持续复兴,多模态模型通过结合计算机视觉和 NLP 功能提供更丰富的体验。IBM 强大的人工智能战略:推进值得信赖的人工智能以获得竞争优势一种利用人工智能力量的全面方法,包括创造竞争优势、在整个业务中扩展人工智能以及推进值得信赖的人工智能。