收到日期:2023 年 9 月 4 日;接受日期:2023 年 12 月 19 日;发布日期:2024 年 1 月 11 日 作者隶属关系:1 法国穆利斯 CNRS 理论与实验生态站,UAR2029;2 英国伯明翰大学代谢与系统研究所。 *通讯作者:Delphine Legrand,delphine.legrand@sete.cnrs.fr 关键词:着丝粒进化;纤毛虫基因组学;大核多态性;程序性 DNA 消除。 缩写:CBS,染色体断裂序列;GO,基因本体;IES,内部消除序列;MAC 基因组,大核基因组;MDS,MAC 目标序列;MIC 基因组,微核基因组;NJ,邻接连接;UTR,非翻译区。 ‡现地址:英国伦敦帝国理工学院国家心肺研究所呼吸道感染健康保护研究组 §现地址:比利时迪彭贝克哈瑟尔特大学环境生物学环境科学中心。†这些作者对这项工作做出了同等贡献 数据声明:所有支持数据、代码和协议均已在文章中或通过补充数据文件提供。本文的在线版本提供了两份补充材料。001175 © 2024 作者
摘要:谷胱甘肽过氧化物酶(GPXS)形成了一个广泛的抗氧化剂蛋白家族,对于维持真核细胞中的氧化还原稳态必不可少。在这项研究中,我们使用了一种结合生物信息学,分子生物学和生物化学的综合方法来研究GPX在无活性氧中的作用,在无活性氧中排毒在单细胞真核模型生物体中,系统发育和机械经验模型分析提供了有关四膜hymena的GPX与系统发育相关物种的直系同源酶之间的进化关系的指示。silico基因表征和文本挖掘用于预测GPXS与其他与生理相关的过程之间的功能关系。GPX基因包含启动子区域中保守的转录调节元件,这表明转录受到专门信号通路的严格控制。通过研究铜(CU)暴露后的基因转录和酶活性的时间过程,在实验验证下进行了生物信息学的发现。结果强调了GPX在排毒途径中的作用,通过对GPX基因表达的复杂调控,使Tethraymena能够在高CU浓度和相关的氧化还原环境中生存。
在两年内适应Pb(II)浓度升高的原生动物纤毛四氢菌的菌株表明,这种极端金属应激的一种耐药机制是铅生物矿化剂促进氯嗜烷酚,这是地球上地球上最稳定的矿物质之一。几种与传输和扫描电子显微镜(X射线能量分散光谱)相结合的几种技术,荧光Mi-Croscopicy和X射线功率衍射分析,已经揭示了氯吡莫尔肽作为结晶结构的结构,以及其他nano globular结构的结构,以及其他领先的glaber globers结构。这是描述纤毛原生动物中这种类型的生物矿化存在的第一次。该菌株的PB(II)生物修复能力表明,它可以从培养基中去除> 90%的毒性可溶性铅。对该菌株的定量蛋白质组学分析揭示了与PB适应有关的主要分子生物学元素(II)应力:蛋白水解系统抗铅蛋白毒素的活性增加,金属硫代蛋白的发生,使PB(II)离子(II)离子,抗氧化氧化氧化氧化和氧化剂的氧化度和氧化氧化应有的氧化剂,并固定氧化。大概参与了液泡的形成,其中含水素会积聚并随后排泄,并加入增强的能量代谢。作为结论,所有这些结果都已汇编为一个综合模型,可以解释真核细胞对极端铅应力的反应。
tetrahymena pyriformis pnz1000168原生动物真菌生物puccinia myrsiphylli的菌株在美国国家生物技术信息中心dq015697 dq015697 dq015697 dq015697
真核生物及其功能和形态多样性的兴起。生物学家已经作为无数生物学过程的模型生物服务了数十年,这是由纤毛四心虫(Ciliate Tetrahymena)示例的,这已经引起了两个诺贝尔奖获奖的发现[3](Box 1)。尽管它们的重要性,但我们对这些生物体的了解受到稳定实验室文化数量有限的影响。这是结合通常较大的基因组,因此很难从环境测序中组装出来,它限制了我们获得高质量基因组序列的能力。因此,原生生物目前代表了全球生物群体中未开发的基因组信息的主要库。除了能够获得其基因组,将生物体带入文化还将其生态学和生理学的研究带入了一个全新的水平,这并不奇怪,这将有助于令人兴奋的发现。
第一次。该项目于1996年在耶鲁大学结束,宣布了四膜虫组I核酶的催化核心的三维结构。这是一项重大成就,因为在此之前,只检查了单个RNA结构:Transfer RNA(tRNA),它比核酶小得多,更简单[1],[2]。到1998年,杜德纳(Doudna)和她的团队确定了其第一个病毒RNA的晶体结构 - 肝炎三角病病毒(HDV)[2]。乙型肝炎是一种人类疾病,在急性和慢性感染中,可以导致肝癌和肝癌的机会增加。是由小病毒样颗粒HDV引起的,该病毒仅感染患有乙型肝炎感染的患者。HDV的圆形RNA基因组为1.7 kb,在宿主细胞内复制成基因组和抗原学(与原始基因组互补)RNA。复制是通过滚动圆机制进行的,该机制产生了包含基因组多个副本的线性RNA链。HDV核酶的催化活性对于宿主细胞内的病毒复制和病毒颗粒组件至关重要。这是因为它通过一般酸基化学反应来催化病毒RNA自裂性,其中活性位点的胞苷和至少一个金属离子涉及[3],[4]。解决大型RNA结构的最初工作导致内部核糖体进入位点(IRES)和蛋白RNA复合物(例如信号识别粒子)进行进一步的结构研究[1]。
摘要 纤毛虫是经历广泛程序性基因组重排的微生物真核生物,这是一种自然的基因组编辑过程,可将较长的生殖系染色体转换为较小的富含基因的体细胞染色体。三种研究较为深入的纤毛虫包括 Oxytricha trifallax 、 Tetrahymena thermophila 和 Paramecium tetraurelia ,但只有 Oxytricha 谱系具有大量乱序基因组,其在发育过程中的组装需要数十万个精确编程的 DNA 连接事件,代表了已知生物中最复杂的基因组动态。在这里,我们通过检查 Oxytricha 谱系中不连续和乱序基因的起源和进化来研究这种复杂基因组的出现。本研究比较了来自三个物种的六个基因组,即 Euplotes woodruffi、Tetmemena sp. 和模型纤毛虫 O. trifallax 的生殖系和体细胞基因组。我们对 E. woodruffi 的生殖系和体细胞基因组(它是一个外群)以及 Tetmemena sp 的生殖系基因组进行了测序、组装和注释。我们发现 Tetmemena 的生殖系基因组与 Oxytricha 的一样具有严重的杂乱和中断:13.6%的基因位点需要程序性易位和/或倒位,一些基因在发育过程中需要数百个精确的基因编辑事件。这项研究表明,早期分化的螺旋藻 E. woodruffi 也有一个杂乱的基因组,但只有大约一半的基因位点(7.3%)是杂乱的。此外,它的杂乱基因不太复杂,共同支持了 Euplotes 作为此谱系中可能的进化中间体的地位,处于积累复杂的进化基因组重排的过程中,所有这些都需要大量修复来组装功能性编码区。比较分析还表明,混乱的基因座通常与局部重复有关,支持了通过许多小的 DNA 重复和衰减事件来产生复杂的、混乱的基因组的渐进模型。