纳米技术已被证明是一个多学科研究领域,其在人类活动多个领域的应用范围不断扩大。随着工程、工业、技术和医疗纺织品多功能性的不断提高,纳米技术在纺织材料方面取得了进展。由于光子晶体、等离子体、发光、建筑着色剂、全息术、LED 显示器和超材料等尖端技术的融合,纺织材料现在有多种用途 [1]。此外,客户对以可持续方式生产的耐用和功能性服装的需求不断增加,为将纳米材料整合到纺织基材中创造了机会。纳米材料提供了更广泛的应用潜力,可以创造能够通过电、颜色或生理信号感知和响应外部刺激的联网服装 [2]。
国内外研究的最新进展大大促进了智能纤维和智能纺织品的发展,目前它们正越来越多地融入纺织行业。先进纺织品包括五大主要功能:传感器、数据处理、执行器、存储和通信。这些技术必须有效地融入服装中,确保它们满足舒适性、耐用性和日常维护适应性等基本要求。从事传统纺织品设计的设计师可以通过整合智能材料和重新评估他们的设计方法来应对挑战,以利用这些先进材料的独特性能。本评论探讨了智能纺织品的最新发展,强调了材料及其最新趋势。
表格已获批准 OMB 编号 0704-0188 估计每次回应此信息收集的公共报告负担平均为 1 小时,其中包括审查说明、搜索现有数据源、收集和维护所需数据以及完成和审查此信息收集的时间。请将有关此负担估计或此信息收集的任何其他方面的评论(包括减轻此负担的建议)发送至国防部华盛顿总部服务部信息行动和报告理事会 (0704-0188),1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302。受访者应注意,尽管法律有其他规定,如果信息收集未显示当前有效的 OMB 控制编号,任何人都不会因未能遵守信息收集而受到任何处罚。请不要将表格寄回上述地址。 1. 报告日期(日-月-年) 2024 年 11 月 12 日
随着电子元件变得越来越精密,新的 ESD 挑战不断出现,静电放电 (ESD) 对敏感行业构成了越来越大的威胁。ESD 是由绝缘表面上的静电荷积累引起的,当高电场导致气隙介电击穿时,静电荷会突然放电。具有不同电子亲和力的材料的接触和分离会通过摩擦电效应引起电荷转移,摩擦电效应是主要的 ESD 产生因素。低湿度会通过阻止电荷消散而加剧 ESD 风险。ESD 会永久损坏敏感电子设备,例如电压阈值可能只有 100 V 的集成电路。除了电子设备之外,ESD 还会通过引发火灾和爆炸威胁易燃行业,通过设备干扰威胁医疗保健行业,通过破坏航空电子设备威胁航空航天系统。防静电服装和防护设备对于控制敏感环境中的 ESD 至关重要。理想的材料可以快速消散电荷,同时限制放电能量。但是,优化快速衰减和减少放电火花需要在传导和绝缘之间进行权衡。影响防静电性能的关键因素包括纤维成分、导电元件的网格间距、织物结构以及导电元件的集成方式。传统的标准化测试(如电阻率)对于现代非均质织物和实际条件有局限性。特定于应用的评估是理想的选择。将技术创新转化为扩展的测试和实施计划对于提高全球采用率至关重要。通过协调努力,这些织物有可能在技术进步不断加快的情况下减轻不断升级的 ESD 风险。本研究中的系统文献综述侧重于构造防静电纺织品时要考虑的结构、技术要素和测试方法。
瑞士欧洲•拥有30多年的经验,他担任联合国可持续时尚联盟秘书处的主席。After years of experience in the industry and in Asia, He founded the 13 years' old Ethical Fashion Initiative, a sustainable supply chain, business accelerator and ESG advocacy and tool development center for the fashion industry (program of the UN manages a large supply chain for the international fashion industry enabling 10,000 artisans in several African countries, in the Caribbean and in Asia, to become regular suppliers of international fashion and lifestyle brands.•他还是Camera Della Moda Italiana的可持续发展委员会成员(由意大利最高时尚和服装品牌组成),并协调其工作组在ESG尽职调查和报告上的活动。
近几十年来,纺织品产量急剧增加,尤其是随着“快时尚”的兴起。与此同时,由于合成、化石纤维(例如聚酯、尼龙)具有成本效益和性能特征(例如拉伸、耐用、抗收缩),其产量增加,导致市场上合成纤维数量庞大。纺织品价值链的特点是垂直分解和连续流程的全球分散,涉及多个行业,包括农业(天然纤维)、石化(合成纤维)、制造、分销物流和零售 [1]。在当前的线性经济模型中,纺织品被生产、使用和处置。事实上,据估计,在美国,仅有 15% 的废弃衣物和纺织品被收集起来再利用、回收或降级回收,其余的则被送去填埋和焚烧 [2]。这不仅造成了巨大的经济和物质价值损失,而且也带来了严重的社会和环境影响。
可穿戴的电子纺织品(电子纹理)正在通过创新应用来改变个性化的医疗保健。然而,将电子设备集成到纺织品中,以使电子废物的迅速增长的电子废物(电子废物)和纺织品回收迅速增长,这是由于混合材料所需的复杂的回收和处理过程,包括纺织品纤维,电子材料和组件。在这里,通过融合了基于石墨烯的电子纹理的热 - 自由解析,以将其转换为石墨烯样的电式回收粉末,以据报道可穿戴电子纹理的第一个闭环回收。然后,一种可伸缩的干燥涂层技术用于再现基于石墨烯的可穿戴电子纹理,并将其潜在的医疗保健应用作为捕获电动员电脑(ECG)信号和温度传感器的可穿戴电极。此外,基于再生石墨烯的纺织品超级电容器强调了它们作为可持续储能设备的潜力,保持了显着的耐用性并在1000个周期后保持≈94%的电容,而面积电容为4.92 MF CM-2。这种可持续的闭环回收电子纹理的回收展示了其重新利用为多功能应用的潜力,从而促进了一种圆形方法,从而在极度阻止了环境影响负面影响并减少了土地填充。
它的目的是:加速数字和绿色过渡,并增强生态系统的韧性,通过第22222季度的共同创造过程与利益相关者启动讨论
近几十年来,纺织品产量急剧增加,尤其是随着“快时尚”的兴起。与此同时,由于合成、化石纤维(例如聚酯、尼龙)具有成本效益和性能特征(例如拉伸、耐用、抗收缩),其产量增加,导致市场上合成纤维数量庞大。纺织品价值链的特点是垂直分解和连续流程的全球分散,涉及多个行业,包括农业(天然纤维)、石化(合成纤维)、制造、分销物流和零售 [1]。在当前的线性经济模型中,纺织品被生产、使用和处置。事实上,据估计,在美国,仅有 15% 的废弃衣物和纺织品被收集起来再利用、回收或降级回收,其余的则被送去填埋和焚烧 [2]。这不仅造成了巨大的经济和物质价值损失,而且也带来了严重的社会和环境影响。
磁响应软材料是下一代软机器人、假肢、手术工具和智能纺织品的有前途的构建模块。然而,迄今为止,制造具有极端长宽比的高度集成磁性纤维(可用作可操纵导管、内窥镜或功能性纺织品)仍然具有挑战性。本文提出了多材料热拉伸作为材料和加工平台,以实现数十米长的柔软、超可拉伸且高弹性的磁性纤维。展示了直径低至 300 μ m、长宽比为 10 5 的纤维,将纳米复合域与嵌入软弹性体基质中的铁磁微粒集成在一起。通过选择适当的填料含量,必须在磁化密度和机械刚度之间取得适当的平衡,展示了可承受 > 1000% 应变的纤维,它们可以被磁力驱动并举起高达自身重量 370 倍的重量。磁性纤维还可以集成其他功能,如微流体通道,并编织到传统纺织品中。研究表明,这种新型磁性纺织品可以清洗并承受极端的机械约束,并且在磁力驱动下可以折叠成任意形状,这为医疗纺织品和软磁系统领域的新奇机遇铺平了道路。