您将使用最先进的技术,例如CRISPR/CAS9站点指导的诱变或蛋白质纯化,并结合其他遗传学方法和生理研究来阐明3-丙型丙烷硫酸盐硫酸盐硫酸盐硫酸盐硫酸盐硫酸盐和拟南芥中相关途径的功能。有关项目和技术的进一步背景,请参见; Moseler等人,2021年,J Biol Chem,DOI:10.1016/j.jbc.2021.100429; Moseler等人,2019年,新Phytol,doi:10.1111/nph.15870; Pedroletti等,2023,Biorxiv,doi:10.1101/2023.08.30.555573。我们提供了一个充满活力的研究环境,具有最先进的实验室,一个友好而有经验的团队,出色的国家和国际联系,有机会在短时间内在国外工作,并在相关技术和技能上专门的培训达到最高标准。薪水和福利是在电视-L 13(65%)(德国公共服务关税)上支付的。
摘要:细胞色素P450(CYP450)单加氧酶超家族,它参与了许多主要和次级代谢物的生物合成途径,在植物生长和发育中起着重要作用。然而,先前未被发现了有关甘蓝纳普斯(BN-CYP450)中CYP450的全身信息,其生物学意义远未理解。氏族86 CYP450的成员,例如CYP704B,对于在植物男性繁殖中形成花粉外壳至关重要,并且已使用CYP704B基因的靶向诱变来在许多农作物中创建新的雄性无菌系。在本研究中,在甘蓝纳普斯品种“中舒安11”(ZS11)中鉴定了总共687个BNCYP450基因,其与拟南芥中的CYP450成员近2.8倍。与拟南芥相比,甘蓝纳普斯是一家具有较大基因组的四倍体油厂,因此可以理性地估计。将BNCYP450基因分为47个亚家族,并将其聚集成9个氏族。系统发育关系分析表明,CYP86家族由四个亚家族和109个BNCYP450组成。CYP86基因的成员在不同组织中显示出特定的表达曲线,并响应ABA和非生物胁迫。CYP704内CYP86氏族,BNCYP704B1A和BNCYP704B1B的两个BNCYP450S在MS26(男性无菌26,也称为CYP704B1)中显示出高的模拟性。这两个BNCYP704B1基因在年轻的芽中特异性表达。然后,我们同时通过簇状的定期间隔短的Palindromic重复序列/CRISPR相关的细胞蛋白9(CRISPR/CAS9)基因组工程系统来淘汰这两个BNCYP704B1基因。编辑的植物在成熟的花药中表现出无花粉的无菌表型,这表明我们在甘蓝乳胶中成功地再现了基因男性不育(GMS,也称为核男性无菌性)线。这项研究提供了BNCYP450S的系统性视图,并提供了一种策略,以促进CRISPR/CAS9系统的商业实用性,以通过敲除Rapeseed的Rapeseed快速生成GMS,通过敲除GMS控制基因。
农杆菌转移 DNA (T-DNA) 是一种有效的植物诱变剂,已用于在拟南芥中创建序列索引的 T-DNA 插入系,作为研究基因功能的工具。创建 T-DNA 插入系需要一种可靠的方法来定位基因组中的插入位点。在本方案中,我们描述了一种接头连接介导的 PCR 方法,我们已使用该方法筛选突变体文库并识别了超过 150,000 个 T-DNA 插入突变体;该方法还可用于绘制单个突变体的图谱。该过程包括三个步骤:限制性酶介导的接头与基因组 DNA 的连接;使用针对接头和 T-DNA 的特异性引物对 T-DNA/基因组 DNA 连接处进行 PCR 扩增;对 T-DNA/基因组连接处进行测序以便绘制到参考基因组。在大多数情况下,测序的基因组区域延伸到 T-DNA 边界,从而可以识别插入物的准确位置。整个过程需要2周时间才能完成。
一旦生成了合适的参考序列,通常会通过重新测试来评估种类内的变化。变体通话过程可以揭示菌株,加收,基因型或个体之间的所有差异。这些变体可以根据可用的结构注释(即基因模型)的功能含义来丰富它们的功能含义。尽管这些功能影响预测以每个变化的基础是准确的,但是一些具有挑战性的案例需要同时将多个PLE相邻变体纳入此预测过程。示例包括相邻的变体,这些变体会改变彼此的功能影响。在预测效果时,邻里感知的变体影响预测变量(NAVIP)考虑给定蛋白质编码序列中的所有变体。作为概念的证明,拟南芥加收哥伦比亚-0和Niederzenz-1之间的变体被注释。Navip可在GitHub(https://github.com/bpucker/navip)上免费获得,并可以通过Web服务器(https:// pbb-tools.de)访问。
植物使用化学诱导的二聚化(CID)模块(包括受体pyr1和HAB1)感知脱落酸(ABA),这是由配体激活的pyr1抑制的磷酸酶。此系统是唯一的,因为可以重新编程配体识别的相对容易。为了扩展Pyr1系统,我们设计了一个正交的“*”模块,该模块携带了二聚体界面盐桥; X射线晶体学,生化和体内分析证实了其正交性。我们使用此模块创建了Pyr1* mandi /hab1*和pyr1* azin /hab1*,它们对其激活的配体曼陀果实和偶氮甲基具有纳摩尔敏感性。在拟南芥和酿酒酵母中进行的实验证明了使用活物生物传感器和构建多输入/输出遗传电路的抗抑郁剂污染物的敏感检测。我们的新模块启用了用于植物和真核合成生物学的可编码的多渠道CID系统,可以增强新的基于植物和微生物的感应方式。
摘要 KNOX 和 BELL 转录因子调控植物二倍体发育的不同步骤。在绿藻莱茵衣藻中,KNOX 和 BELL 蛋白由相反交配类型的配子遗传,并在合子中异二聚化以激活二倍体发育。相反,在小立碗藓和拟南芥等陆生植物中,KNOX 和 BELL 蛋白在二倍体发育后期的孢子体和孢子形成、分生组织维持和器官发生中发挥作用。然而,目前尚不清楚 KNOX 和 BELL 的对比功能是否是在藻类和陆生植物中独立获得的。本文表明,在基础陆生植物物种多形地钱中,配子表达的 KNOX 和 BELL 是启动合子发育所必需的,它通过促进核融合来启动,其方式与莱茵衣藻中的方式惊人地相似。我们的结果表明,合子激活是 KNOX/BELL 转录因子的祖先作用,随着陆生植物的进化,其转向分生组织维持。
Doug Wright 博士,K-INBRE 首席研究员,堪萨斯大学医学中心 开幕致辞 上午 9:00 Salathe 博士,博士,堪萨斯大学医学中心研究副校长 堪萨斯大学医学中心欢迎辞 上午 9:10 Christie Befort 博士,堪萨斯大学医学中心教授兼 COBRE PI 主旨发言人 Doug Wright 博士,K-INBRE 首席研究员,堪萨斯大学医学中心 主持人:第一位实习生演讲 上午 9:45 Lauren Apprill,堪萨斯州立大学,曼哈顿 KS 题目:一种控制拟南芥中硫代葡萄糖苷途径基因表达的转录抑制复合物 上午 10:00 Erin Blocker,恩波利亚州立大学系 题目:远程锻炼:让高风险的农村成年人进行有效的独立锻炼以降低痴呆症风险 上午 10:25 休息 宴会厅门厅
CRISPR–Cas9 介导的基因组编辑已广泛应用于真核系统的基础和应用生物学研究。虽然许多研究认为 CRISPR 靶位的 DNA 序列是 CRISPR 诱变效率和突变谱的主要决定因素,但越来越多的证据揭示了染色质环境的重要作用。尽管如此,大多数先前的研究都受到缺乏足够的表观遗传资源和/或仅在短时间窗口内暂时表达 CRISPR–Cas9 的限制。在本研究中,我们利用拟南芥 (Arabidopsis thaliana) 中丰富的高分辨率表观基因组资源,使用稳定的转基因植物来解决染色质特征对 CRISPR–Cas9 诱变的影响。我们的结果表明,DNA 甲基化和染色质特征可能导致诱变效率发生高达 250 倍的显著变化。低诱变效率主要与抑制性异染色质特征有关。这种抑制效应似乎在细胞分裂过程中持续存在,但可以通过大幅减少 CRISPR 靶位的 DNA 甲基化来缓解。此外,特定的染色质特征(例如 H3K4me1、H3.3 和 H3.1)似乎与非同源末端连接修复途径介导的 CRISPR-Cas9 突变谱的显著变化有关。我们的研究结果提供了强有力的证据,表明特定的染色质特征可能对 CRISPR-Cas9 诱变效率和 DNA 双链断裂修复结果产生重大而持久的影响。
DNA甲基化是可转座元件(TE)沉默的重要组成部分,但是甲基化引起转录抑制的机制仍然尚不清楚1 - 5。在这里,我们研究了拟南芥甲基-CPG结合结构域(MBD)蛋白MBD1,MBD2和MBD4,并表明MBD2在男配子发生过程中起着TE抑制剂的作用。MBD2结合的染色质区域,含有高水平的CG甲基化,MBD2能够将其束缚在其启动子上时能够使FWA基因沉默。MBD2损失在成熟花粉的营养细胞中的一小部分TE上引起激活,而不会影响DNA甲基化水平,这表明MBD2介导的沉默作用严格在DNA甲基化的下游下游。TE激活在MBD5 MBD6和ADCP1突变体背景中变得更加重要,这表明MBD2与其他沉默途径相比起作用以抑制TES。总体而言,我们的研究将MBD2鉴定为甲基读取器,在男配子发生过程中,在DNA甲基化下方作用以使TES保持沉默。
植物和微生物进行沟通以制止害虫,清除营养,并对环境变化做出反应。由物种的菌群组成的微生物群相互相互作用,并使用复杂的调节网络来解释的大型化学语言相互作用。在这项工作中,我们开发了模块化的跨沟通通道,使细菌能够向植物传达环境刺激。我们在Pseudomonas putida和Klebsiella肺炎中引入了一个“发件人设备”,该肺炎会产生小分子P-coumaroyl-Homoserine Lactone(PC-HSL),当传感器或电路的输出打开时。该分子触发植物中的“接收器装置”以激活基因表达。我们在拟南芥和结核菌(马铃薯)中验证了该系统,并在土壤中生长,通过交换细菌来表明其模块化,这些细菌可以处理不同的刺激,包括IPTG,ATC和砷。可编程沟通通道和植物之间的可编程通信通道将使微生物前哨向农作物传输信息,并提供设计人工联盟的基础。
