Recent Advances in Injection Molding of Carbon Fiber Reinforced Thermoplastic Polymer Composites: A Review Wei Zou, 1 Xinbo Zheng, 2 Xiaodong Hu, 3 Jintao Huang, 2,* Guanghong Wang 1,* and Zhanhu Guo 4,* Abstract Carbon fiber reinforced polymer composites (CFRP) have excellent comprehensive mechanical properties, and become one of the轻巧组件的主要方法。在汽车行业,航空业和其他领域,它受到了越来越多的关注。为了提高生产率和质量,并更好地利用碳纤维增强聚合物复合材料,尤其是对于碳纤维增强的热塑性聚合物复合材料,本文首先回顾了碳纤维增强的碳纤维塑造热塑性聚合物聚合物复合材料的研究状态,最终讨论了该领域的本领域。
摘要:近年来,由于汽车和航空航天等结构应用对减轻重量和提高性能的需求,金属的粘合剂粘合变得越来越重要。我们利用硬木生物质中的技术有机溶剂木质素和丙烯腈丁二烯共聚物橡胶 (NBR) 开发了用于粘合钢基材的可再生热塑性粘合剂。将丙烯腈摩尔比分别为 33%、41% 和 51% 的 NBR33、NBR41 和 NBR51 与木质素混合形成两相热塑性粘合剂,并测量其粘合性、粘弹性和表面特性。组合物中的木质素含量各不相同,范围从 40% 到 80% (w/w),以改变材料的韧性、刚度和表面能特性。NBR 中的腈含量越高,木质素和 NBR 相之间的相互作用或反应性越好,从而导致粘合剂的模量和刚度越大。同时,增加木质素的比例会降低韧性并提高刚度,在木质素负载率为 60% 的 NBR51 中测得的最高粘合强度为 13.1 MPa。表面能测量表明,总表面能(极性和分散表面能的总和)随木质素负载而上升,这表明表面能和基质强度对合成材料的粘合性能都起着关键作用。开发并实施了基于有限元的粘结区模型 (CZM),以研究粘合接头的破坏强度。这项研究证明了木质素作为粘合剂的宝贵组成部分的可行性,这不仅是因为其固有的化学结构和刚性,还因为其表面能特性。
包装行业是塑料的主要用户,它贡献了进入我们环境的最高塑料废物。因此,诸如基于生物的塑料之类的替代品已经出现并变得越来越商业化。热塑性淀粉(TPS)是生产生物塑料膜中使用的原材料之一。但是,使用TPS的主要缺点是由于其机械性较低,障碍性能较差和蓬松性。本评论文章将TPS摘要作为食物包装材料的选择。它通过掺入生物填充物和Essentials Oils来回顾有关TPS改进的最新研究。它还描述了对TPS增强生物膜对膜特性(包括机械,屏障和抗菌特性)的影响。本文还讨论了TPS增强生物膜的性能,以确保食品包装应用食品的货架稳定性和易腐性。最后,它还强调了食品包装行业TPS增强生物膜的挑战和机会。
问题虽然热塑性材料广泛应用于增材制造 (AM),并已显示出强度高、重量轻和生产成本相对较低等优势,但它们也具有某些缺点,例如熔化温度较低以及在长期应力负荷下容易拉伸和变弱。由于熔丝制造 (FFF) 和熔粒制造 (FGF) 等方法只能处理热塑性材料,因此迫切需要开发新的挤出方法来处理具有低热膨胀系数 (CTE) 的热固化热固性材料,以用于高强度和高温应用。即使是当今最先进的打印机产品也存在差距,禁止使用工业和军事相关应用中常见的高级热固性复合材料。
通讯作者:ocheiemekastephen@nbrri.gov.ng,+23408060094881提交日期:25/02/2024接受日期:26/04/2024日期发布日期:16/05/2024摘要:这项研究调查了生物重新构成的生物置换的开发。环境危害。这些危害包括但不限于污水阻塞和海洋环境中对水生生物的危险造成的洪水。溶液铸造方法用于将不均匀的高岭石粘土纳米粒子与蒸馏水,淀粉,稀乙酸和硝酸混合在一起,以产生不同的热塑性淀粉(TPS)/粘土复合物的不同组成,其粘土材料与2.5 wt至10 wt的粘土。使用X射线衍射(XRD)对复合材料进行表征,并确定了机械和吸水性能。结果表明,与对照相比,与对照相比,抗拉力强度(0.72 MPa),弯曲强度提高了5倍(3.34 MPa),硬度增加了2倍(23.56 HVN),并降低了3倍(6.63%)。此外,10 wt。%粘土含量复合材料显示出最高的机械性能。列出的特性的显着改善归因于结晶度的降低以及热塑性淀粉和纳米粘膜之间新化学键的形成。观察到,如果采用同步机器搅拌器(例如挤出机),则可以进一步增强复合材料的性能。
最近,人们对热塑性复合材料的兴趣又重新燃起,这主要是由于自动化技术的进步,通过提高制造速度,可以大幅降低成本,同时减少与热固性复合材料制造相关的零件数量和能耗。与此同时,新的材料系统已经开发出来,热塑性复合材料预浸料的质量也随着时间的推移而提高。此外,热塑性复合材料的室温保质期几乎是无限的,生产废料可以重复使用,报废零件可以回收利用,为更可持续的运营和下游市场提供了机会。这些因素促使人们对航空航天、汽车和其他工业应用领域中热塑性复合材料的先进技术产生了浓厚的兴趣。
在过去的 30 年里,聚合物复合材料行业蓬勃发展,为航空、能源和运输部门生产先进的结构材料。然而,交联热固性基质的使用与重大的报废挑战有关,这对该行业来说是一个关键问题。此外,该行业的特点是许多劳动密集型流程。根据工业 4.0 原则,已经确定了两条主要途径来提高可持续性:利用高性能热塑性基质和将人工智能融入制造业。然而,人们对这些技术的生命周期评估存在很大的担忧,这些担忧在初始计算中没有考虑到,包括聚合物合成的环境足迹和训练人工智能的能源需求。这一观点旨在解决化学原料可能产生的大量二氧化碳排放以及这些新技术的高计算要求。
专门为电子组件组件设计;多层焊剂是无铅的,没有干净且环保的导电胶。量身定制的流变学允许多种应用方法,包括丝网印刷,模板打印或分配。多层焊剂通过IR,会议或盒子烤箱设备中的热处理键合。能够以大量应力吸收特性实现低温处理和快速键合。Polystolder是一种独特的填充银聚合物矩阵,即使经过广泛的环境老化,也会形成具有标准组件和基板的稳定电气和机械连接。
摘要:这项研究研究了在水分和冷冻率的环境暴露条件下,大型3D打印的热塑性复合物质系统的耐用性。。 (CF/ABS)。在加速暴露之后,水分吸收,延伸系数和相关机械性能的降低(经臂强度和弯曲模量)。结果表明,与常规的聚合物复合材料相比,由基于生物的热塑性聚合物复合材料制成的大型3D打印零件更容易受到水分和冷冻 - 丝丝暴露的影响,并具有较高的水分吸收和机械性能的降低。