摘要:与化学计量简单的氮化铝 (AlN) 相比,锆钛酸铅薄膜 (PZT) 具有优异的压电和介电性能,是先进微机电系统 (MEMS) 器件中另一种有希望的候选材料。大面积 PZT 薄膜的制造具有挑战性,但需求迫切。因此,有必要建立合成参数与特定性能之间的关系。与溶胶-凝胶和脉冲激光沉积技术相比,本综述重点介绍了磁控溅射技术,因为它具有高度的可行性和可控性。在本文中,我们概述了 PZT 薄膜的微观结构特征、合成参数(如基底、沉积温度、气体气氛和退火温度等)和功能特性(如介电、压电和铁电等)。本综述特别强调了这些影响因素的依赖性,为研究人员通过磁控溅射技术获取具有预期性能的PZT薄膜提供实验指导。
在高温下表现出结构稳定性的难治性金属纳米结构引起了人们对新兴应用的巨大兴趣,例如热质量,热伏耐托(TPV),太阳能热,热电,热电,,太阳能电气,太阳能型生成应用。[1-19]然而,尽管散装金属的熔点熔点高得多,但这些金属制成的纳米结构在高温下比其散装柜台更容易受到形态变化的影响。这主要是由于较大的表面量比导致纳米结构的表面能增加[20],从而驱动了与环境气体和质量扩散的氧化还原反应,从而导致结构衰减。这些纳米结构的固有的热实例阻碍了其在高于1200°C的温度下的靶向应用[21–25]此外,高温等离子/光子应用所需的材料是高度挑战性的。在高温下,光谱选择性和结构稳定性的结合仅在一小部分可用的材料选择中。
Marquez, 2 R. O'Connor 1,3 1 都柏林城市大学物理科学学院,格拉斯内文,都柏林 9,爱尔兰 2 工程技术学院,物理和数学系,自治
摘要:氮化钛(Ti-n)薄膜是电导和导导的,具有高硬度和耐腐蚀性。致密和无缺陷的Ti-N薄膜已被广泛用于切割工具,耐磨性组件,医疗植入装置和微电子的表面修饰。在这项研究中,通过高功率脉冲磁控溅射(HPPM)沉积了Ti-N薄膜,并分析了其血浆特性。通过调节底物偏置电压以及其对微结构,残留应力和薄膜的粘附的影响来改变Ti物种的离子能量。结果表明,在引入氮气后,在Ti靶标表面形成了Ti-N化合物层,从而导致Ti目标放电峰功率增加。此外,Ti物种的总频量减少,Ti离子的比率增加。HPPM沉积的Ti-N薄膜密集且无缺陷。当Ti-ions的能量增加时,Ti-nfim的晶粒尺寸和表面粗糙度减少,残留应力增加,Ti-N Thin Fimflm的粘附强度降低。
摘要:本研究的目的是在钛 (Ti) 植入物表面形成功能层,以增强其生物活性。使用经济高效的浸涂法,在碱处理的 Ti 表面上沉积了含有羟基磷灰石 (HAp) 纳米颗粒 (NPs) 和镁 (Mg) 颗粒的聚氨酯 (PU) 层。从形态、化学成分、粘附强度、界面结合和热性能等方面评估涂层。此外,使用 MC3T3-E1 成骨细胞样细胞研究了细胞对不同涂层 Ti 基材的反应,包括通过碱性磷酸酶 (ALP) 测定评估细胞粘附、细胞增殖和成骨活性。结果表明,HAp NPs 的加入增强了涂层和碱处理的 Ti 表面之间的界面结合。此外,Mg 和 HAp 颗粒的存在增强了表面电荷特性以及细胞附着、增殖和分化。我们的结果表明,在钛植入物上沉积含有 Mg 和 HAp 颗粒的生物活性复合层可能会诱导骨形成。
摘要:本研究的主要目的是通过对钛酸锂离子电池内部产热的实验测量来说明钛酸锂离子电池组内的冷却机制。选择介电水/乙二醇(50/50)、空气和介电矿物油用于钛酸锂离子电池组的冷却。考虑了不同的流动配置来研究它们的热效应。在钛酸锂离子电池组中的锂离子电池单元中,采用了与时间相关的产热量,作为体积热源。假设电池组内的锂离子电池在所有模拟中具有相同的初始温度条件。通过 ANSYS 模拟锂离子电池组,以确定冷却系统和锂离子电池的温度梯度。模拟结果表明,流动布置和流体冷却剂类型会显著影响锂离子电池组的温度分布。
摘要:这项研究的目的是通过激光指导的能量沉积(LDED)技术评估CP-TI的生存能力,作为通过评估微结构,机械和电化学性质的评估,作为牙齿假体的材料。此外,还将LDED产生的材料与牙科修复行业铣削的同一合金进行了比较。获得的结果表明,根据ISO 22674和ISO 10271牙科标准,两种材料在生物医学应用中具有良好的总体性能。两种材料都具有高腐蚀性,这是该合金的典型特征。但是,通过LDED获得的商业纯钛4级比铣削技术产生的机械性能更高:最终拉伸强度的7%增加,裂缝后伸长率的增量为12.9%,韧性增加了30%。这种改进的机械性能可以归因于LDED过程固有的微结构修改。
由薄,柔软,可拉伸的设备制成的电子皮肤,可以模仿人类的皮肤并重建触觉和感知,为假体传感,机器人技术控制和人机界面提供了巨大的机会。薄片设备的高级材料和力学工程已被证明是启用和增强各种电子皮肤的灵活性和可伸缩性的效果途径;但是,由于现有制造技术的限制,设备的密度仍然很低。在这里,我们报告了一个高通量的一步过程,用于对电子皮肤的传感器密度为25传感器/cm 2的大型触觉传感阵列,其中传感器基于本质上可拉伸的压电铅锆钛酸钛酸(PZT)弹性器。以均匀性和被动驱动方式的PZT弹性体传感器阵列可实现高分辨率触觉感应,简化数据采集过程并降低制造成本。高通量制造工艺提供了一个通用平台,用于将本质上可拉伸的材料集成到大面积的高区域,高设备密度软电子设备,用于下一代电子皮肤。
钛酸钡 (BaTiO 3 ) 是第一种已知的铁电陶瓷,由于其独特的介电、铁电和压电特性而成为各种应用的合适候选材料。众所周知,BaTiO 3 粉末的特性在很大程度上取决于合成路线和热处理条件。在本研究中,通过 Pechini 法使用醋酸钡和钛 (IV)(三乙醇胺)异丙醇水溶液合成了 BaTiO 3 纳米粒子。起始材料在水环境中稳定,并且可以在工业规模上高效制备 BaTiO 3 。通过 X 射线衍射 (XRD)、Rietveld 细化、扫描电子显微镜 (SEM)、能量色散 X 射线光谱 (EDX)、热重分析 (TGA) 和傅里叶变换红外光谱 (FT-IR) 表征了 BaTiO 3 的结构特性。 XRD 和 Rietveld 细化研究表明,BaTiO 3 具有立方结构,空间群为 Pm-3m(#221)。根据 Scherrer 公式估算,在 800ºC 的煅烧温度下,平均晶粒尺寸准确确定为 51.9 nm。粉末的 SEM 显微照片显示 BaTiO 3 晶粒呈圆形,平均晶粒尺寸约为 40-90 nm。关键词:钛酸钡,Pechini,Rietveld,XRD