摘要:(1) 背景:口服靶向抗癌药物容易受到系统前药代动力学药物相互作用 (DDI) 的影响。由于大多数此类药物是肠道和/或肝脏细胞色素 P-450 酶和肠道膜转运蛋白的底物,因此很难确定这些 DDI 的性质(即基于酶还是基于转运蛋白)。(2) 方法:DDI 和对照期(MAT 比率 < 0.77 或 >1.30)之间的平均吸收时间 (MAT) 差异已被提出,以暗示肠道水平的 DDI 中存在转运蛋白。该方法已应用于大量口服靶向抗癌药物(n = 54,涉及 77 项 DDI 研究),这些药物来自国际文献和/或可公开访问的 FDA 文件中的 DDI 研究。 (3) 结果:33 项 DDI 研究表明 MAT 存在显著变化,其中 12 项可通过调节流出转运蛋白来解释。在 21 项 DDI 研究中,调节流出转运蛋白无法解释 MAT 变化,这表明流入转运蛋白可能在肠道吸收中发挥相关作用。 (4) 结论:该方法可以提示肠道转运蛋白参与 DDI,应与体外方法结合使用,以帮助了解 DDI 的起源。
• 扩展了内源性生物标志物(主要用于转运蛋白)部分,以指导 DDI 评估(下次关于临床 DDI 评估的介绍中将介绍); • 包括对血浆蛋白结合(PPB)测定的预期,以支持使用实验测量的 F u 对蛋白结合率极高的药物(>99%)预测临床 DDI 潜力; • 修改了评估药物作为时间依赖性抑制剂、诱导剂和 MATE 转运蛋白抑制剂的体内 DDI 潜力的简单标准); • 修改了关于代谢物作为酶或转运蛋白的抑制剂或诱导剂的 DDI 责任评估部分; • 添加关于 UGT 介导的 DDI 考虑因素的新章节; • 在附录中提供了用于体外或体内研究的药物示例,这些药物作为 CYP、UGT 和转运蛋白的底物、抑制剂或诱导剂。
通过果蝇神经胶质的抽象性内吞作用是睡眠量的重要决定因素,并且在血脑屏障(BBB)的胶质胶质中优先发生。为了鉴定其运输是由睡眠依赖性内吞作用介导的代谢产物,我们对由于神经胶质性内吞作用的障碍而增加了睡眠的代谢组学分析。我们报告说,酰基肉碱,脂肪酸与肉碱结合以促进其运输,积聚在这些动物的头部。并行,为了鉴定转运蛋白和受体的损失导致因内吞作用阻滞而导致的睡眠表型,我们筛选了富含屏障神经胶质的基因以对睡眠产生影响。我们发现脂质转运蛋白LRP1和2或肉碱转运蛋白转运蛋白的敲低会增加睡眠。支持这种想法,即内吞作用会影响通过特定的转移者的贩运,敲低LRP或ORCT转运蛋白也会增加头部中的酰基肉碱。我们提出,脂质物种(例如酰基肉碱)通过依赖睡眠依赖性内膜症通过BBB运输,它们的积累反映了对睡眠的需求增加。
海洋异养原核物主要使用转运蛋白占据环境底物。靶向特定底物的转移者的模式塑造了异养原核生物在海洋有机循环中的生态作用。在这里,我们报告了由于分类学变化而导致的原核生物转运蛋白表达的大小分级模式,这是由针对ATP结合盒(ABC)转运蛋白和TONB依赖性转运蛋白(TBDTS)的多种“ OMICS”方法揭示的。底物特异性分析表明,海洋SAR11,杜鹃花和大洋螺旋藻使用ABC转运蛋白在自由生活的部分中使用有机氮,而替代词,细菌植物和sphingomonadales和sphingomonadales在碳纤维上使用TBDTS上的有机含量和含碳纤维有机物。转运蛋白的表达还支持深海原核生物的不同生活方式。我们的结果表明,有机物中的转运蛋白差异反映了原核生物介导的有机物循环中明显的小众分离。
氨基糖苷类和顺铂类药物因其在临床治疗各种疾病方面的高效性而被广泛使用,然而,它们的耳毒性副作用值得高度关注。这些药物可以通过特定的通道或转运体进入内耳,不仅影响毛细胞的存活,还会诱导活性氧的过量产生。目前,科学研究主要通过活性氧的下游干预来解决这一问题。然而,最近的研究表明,直接减少毛细胞对这些药物的吸收可以有效避免最初的损伤。特别是,可以通过分子动力学模拟详细探索药物与毛细胞之间的相互作用,以及相关通道和转运体的具体功能。结构生物学领域的迅速发展揭示了与药物吸收密切相关的各种通道和转运体的结构功能,如机电转导通道 (MET) 和有机阳离子转运体-2 等,为新的耳部保护策略提供了理论基础和潜在目标。因此,研究MET通道在耳毒性药物吸收中的调节作用至关重要,这是开发预防和治疗方法的关键。本综述旨在强调听觉毛细胞抑制耳毒性物质吸收的机制,探索如何针对这些通道和转运蛋白开发新的耳部保护方法,并为解决药物引起的耳毒性提供新的视角和策略。以这些通道和转运蛋白为靶点保护毛细胞的方法不仅拓宽了我们对耳毒性潜在机制的理解,而且可以促进听觉保护领域的进一步研究和进展。
疟疾仍然是一个公共卫生问题,每年仍有超过500万人死亡。尽管许多国家正在进行努力,但由于对大多数传统药物的抗药性,包括青蒿素化合物,这是目前可用的最有效的抗疟药,因此消除了疟疾。因此,迫切需要采用新药物的新药物,具有新的作用机理以绕过抵抗力。从这个意义上讲,最有希望的领域之一是探索运输蛋白。转运蛋白介导溶质摄取,以进行细胞内寄生虫增殖和存活。靶向转运蛋白可以利用这些过程来消除寄生虫。在这里,我们专注于恶性疟原虫的转运蛋白 - 被感染的红细胞作为潜在的生物学靶标,并讨论针对它们的已发表药物。
CSIR-IIIM查mu的研究结果基于以前的研究,该研究探讨了其他物种中ABC转运蛋白的结构和功能,例如水稻[3]和拟南芥[4]。大米的研究强调了ABCI亚科的动态性质及其在盐应激反应中的潜在作用[3]。同样,拟南芥中ABC蛋白的综合清单提供了对该蛋白质家族多样性的基本理解[4]。一起,这些研究帮助绘制了ABC转运蛋白的进化模式及其在不同植物谱系中的功能作用。
Schuetz博士不仅带来了丰富的出版知识,还带来了广泛的研究经验。他目前是圣裘德儿童研究医院的教职员工(1992- 1993年)。他是药物科学系的成员兼前副主席(2005 - 2022年)(现为药学和药学系)。他的实验室采用了各种复杂技术(超分辨率显微镜,生物化学,细胞生物学,蛋白质组学,有条件的敲除,定期散布的短篇小说重复序列或CRISPR屏幕等,等等)了解转运蛋白如何促进病理生理学,药物反应,毒理学和代谢。实验室已定义并在功能上“脱孔”转运蛋白:ABCB6,ABCG2和ABCC4,在同行评审的期刊中,有175篇文章,以及与ABC Transporters相关的几项专利。
神经肌肉系统相对发达、高度调控、功能齐全,是多细胞蠕虫细胞和基因表达的很大一部分,因为它对于运动、生存、发育和繁殖至关重要。事实上,在神经肌肉系统中发挥重要作用的分子是大多数现有驱虫药的主要药物靶点。值得注意的是,神经肌肉功能依赖于受体、神经递质、转运蛋白和细胞内信号通路的协调网络。此外,这些网络与多种细胞过程所需的代谢途径相结合。一位美国科学家回顾了蠕虫中的几种烟碱乙酰胆碱受体 (nAchR) 和 ATP 结合盒 (ABC) 转运蛋白,并将它们与各自的抑制剂联系起来,以开发新型驱虫药 [1] 。