图3。接触过程中不同材料之间电子结构的简化示意图; a)两种金属,从较低的能量金属可以容纳来自较高能量金属的电子; b)金属和绝缘子,那里没有一个可以使电子的自由状态满足,因此只有通过隧穿才能将电子转移到绝缘体(或通过热激发过程); c)在金属和缺陷的绝缘子之间,原子缺陷使可用的电子状态发生电子传输。d&e)显示d)陶瓷的原理图;和e)聚合物键合网络;左)原始晶格;右)由于在陶瓷网络中引起的缺陷,该晶格通过多原子协调的键合网络维持,而在聚合物中,一维键网网络被损坏,可能导致传质。
引言着重于环境可持续性以及技术的增长,许多研究领域正在出现。这样的领域涉及利用各种形式的可用自然能量来发电。超越太阳能[1],风[2],海洋[3],生物量[4],地热[5],氢能[6]和水力发电[7],环境能量收获[8,9],已经变得越来越重要。通过设计有效的设备来捕获这种残留的机械能,我们可以为生成环保和可定制的电能铺平道路[10]。Triboelectric纳米生成器Tengs为全球能源危机提供了创新的解决方案。这些设备利用接触电气化和静电感应将机械能转换为电力,而无需任何外部电源。通过利用来自人类运动和机械活动等各种来源的机械能量,Tengs已成为一项有前途的技术,尤其是用于自动传感系统和能量收获[11,12]。它们与储能设备的集成对于实际应用至关重要。
抽象的摩擦式摩擦或接触材料会导致电荷转移时,在许多领域都无处不在,并且已经详细研究了几个世纪。尽管如此,对摩洛电性的完整描述仍然难以捉摸。在这里,我们分析了金属垂体和半导体之间的接触,包括来自半导体耗尽区的贡献以及由于阿森特式接触处的应变梯度而产生的挠性偏振。然后讨论和计算涉及的电荷转移涉及的免费费用。因此,我们开发了一个定量模型,用于摩擦电荷转移,该模型详细介绍了如何使用接触参数的电荷传输量表,耗尽和挠性性的相对影响,并且与多种类别的TriboElectric实验中的各种趋势一致。
机器人技术的最新发展越来越多地强调了传感技术,尤其是触觉感知的重要性,使机器人能够有效地与其环境互动并解释物理相互作用。由于功率效率和低成本,经常研究底层电离机制,用于测量压力和识别材料以增强机器人感知。尽管如此,尽管它们在日常生活中盛行,但仍有使用互动效应来检测弯曲表面的探索有限。在这里,提出了多层结构设计的摩擦多模式触觉传感器(TMTS),以同时识别不同的材料,曲线和压力,从而将不同的方式解耦以启用更准确的检测。通过将传感器连接到机器人的纤维上并利用深度学习分析,定量曲率测量可为对象的详细几何特征提供更精确的见解,而不是仅仅评估其整体形状,因此可以实现具有99.2%精度的12个Grasped对象的自动识别。传感器可以进一步用于准确识别机器人手的不同触摸手势下的物体的柔软度,达到94.1%的精度,证明了其在未来机器人支持的智能社会中的广泛应用。
Triboelectric纳米生成器(Tengs)在为各种可穿戴设备获得可持续能源方面起着至关重要的作用。聚合物材料是量的重要组成部分。生物聚合物是适合Tengs的材料,因为它们具有降解性,自然采购和成本效果。在此,总结了常用生物聚合物和精心设计的仿生技术的最新进展。详细概述了天然橡胶,多糖,基于蛋白质的生物聚合物和其他常见的合成生物聚合物在Teng技术中的应用。根据其电力能力,极性变化和特定功能,讨论了每个生物聚合物的活性和功能层。还总结了特定生物聚合物的重要仿生策略和相关应用,以指导Teng的结构和功能设计。将来,对摩擦性生物聚合物的研究可能会着重于探索替代候选者,增强电荷密度和扩大功能。在本综述中提出了基于生物聚合物的tengs的各种可能应用。通过将生物聚合物和相关的仿生方法应用于Teng设备,Teng在医疗保健领域的应用,环境监测以及可穿戴/可植入的电子设备可以进一步促进。
摘要:灵活的触觉传感器由于其生物适应性和快速信号感知而显示出对人工智能应用的希望。Triboeelectric传感器可实现主动动态触觉传感,同时整合静态压力传感和实时多通道信号传输是进一步开发的关键。在这里,我们提出了一个集成结构,该结构结合了一个用于静态时空映射的电容传感器和一个用于动态触觉识别的摩擦电传感器。4×4像素的液态金属柔性双模式互动耦合触觉传感器(TCTS)阵列可实现7毫米的空间分辨率,表现为0.8 PA的压力检测极限,快速响应6 ms。此外,使用基于MXENE的突触晶体管使用的神经形态计算在90个时期内通过TCTS阵列收集的动态互动信号在90个时期内实现了100%的识别精度,并实现了来自TCTS阵列的动态互动信号,以及从多键盘触觉数据中的交叉空间信息通信中实现了多型触觉数据的交流。结果阐明了在人界面和高级机器人技术中双模式触觉技术的相当大的应用可能性。关键字:互联网耦合,触觉传感器阵列,神经形态计算,人类 - 机器接口,混合现实
摘要:摩擦电纳米发电机 (TENG) 是一种可持续和可再生技术,用于收集自然界中浪费的机械能,例如运动、波浪、风和振动。TENG 装置通过摩擦材料对接触和分离的循环工作原理发电。该技术在能源生产、人类护理、医药、生物医学和工业应用领域有着突出的应用。TENG 装置可应用于许多实际应用,例如便携式电源、自供电传感器、电子设备和电力消耗设备。借助 TENG 能源技术,可以在不久的将来减少甚至解决重大能源问题,例如减少气体排放、加强环境保护和改善人类健康。通过利用摩擦电特性具有显著差异的材料或实施先进的结构设计,可以提高 TENG 的性能。本综述全面研究了 TENG 技术在利用机械废能方面的最新进展,主要关注其可持续性和可再生能源属性。它还深入探讨了优化摩擦表面结构以提高输出性能、实施储能系统以确保稳定运行和长期使用、探索能量收集系统以有效管理收获的能量以及强调 TENG 在各种情况下的实际应用等主题。结果表明,TENG 技术有可能在不久的将来广泛应用于可持续能源生产、可再生能源、工业和人类护理。
随着物联网和人工智能的快速发展,对智能轴承传感技术的需求急剧增加。一般的轴承传感器只能识别来自温度或振动的基本信息,远远不能满足自诊断和自维护。最近,基于摩擦电纳米发电机的自供电传感技术为制造智能轴承开辟了一条新途径。在本研究中,摩擦电原理被应用于商用金属聚合物滑动轴承(MPPB),该轴承可以实现自感知,自诊断和自维护。摩擦电MPPB(T-MPPB)的几何结构旨在平衡输出效率和外部负载,并验证了超强的耐久性和负载能力。此外,首次揭示了边界和静水流体润滑下输出变化趋势背后的机制。此外,深度学习算法可以高度准确地对润滑状态进行分类。所提出的 T-MPPB 有可能根据 AI 分类的润滑状况,使用润滑泵实现自我维护。这项研究不仅确立了设计自供电智能 MPPB 的可行性,还展示了一种识别润滑状态的方法,从而通过自供电传感器实现自我诊断和自我维护能力。
Dongwhi Choi, Ψ Younghoon Lee, Ψ Zong-Hong Lin, Ψ Sumin Cho, Miso Kim, Chi Kit Ao, Siowling Soh, Changwan Sohn, Chang Kyu Jeong, Jeongwan Lee, Minbaek Lee, Seungah Lee, Jungho Ryu, Parag Parashar, Yujang Cho, Jaewan Ahn, Il-Doo Kim, Feng Jiang, Pooi See Lee, Gaurav Khandelwal, Sang-Jae Kim, Hyun Soo Kim, Hyun-Cheol Song, Minje Kim, Junghyo Nah, Wook Kim, Habtamu Gebeyehu Menge, Yong Tae Park, Wei Xu, Jianhua Hao, Hyosik Park, Ju-Hyuck Lee, Dong-Min Lee, Sang-Woo Kim, Ji Young Park, Haixia Zhang, Yunlong Zi, Ru Guo, Jia Cheng, Ze Yang, Yannan Xie, Sangmin Lee, Jihoon Chung, Il-Kwon Oh, Ji-Seok Kim, Tinghai Cheng, Qi Gao, Gang Cheng, Guangqin Gu, Minseob Shim, Jeehoon Jung, Changwoo Yun, Chi Zhang, Guoxu Liu, Yufeng Chen, Suhan Kim, Xiangyu Chen, Jun Hu, Xiong Pu, Zi Hao Guo, Xudong Wang, Jun Chen, Xiao Xiao, Xing Xie, Mourin Jarin, Hulin Zhang, Ying-Chih Lai, Tianyiyi He, Hakjeong Kim, Inkyu Park, Junseong Ahn, Nghia Dinh Huynh, Ya Yang, Zhong Lin Wang, * Jeong Min Baik, * and Dukhyun Choi *
摘要:振动产生的机械能广泛存在于周围环境中。可以使用摩擦发电机有效地收集这些能量。然而,由于带宽有限,收集器的效率受到限制。为此,本文对变频能量收集器进行了全面的理论和实验研究,该收集器集成了基于振动冲击摩擦电的收集器和磁非线性,以增加工作带宽并提高传统摩擦电收集器的效率。带有尖端磁铁的悬臂梁与另一个极性相同的固定磁铁对齐,以产生非线性磁排斥力。通过利用尖端磁铁的下表面作为收集器的顶部电极,将摩擦电收集器集成到系统中,而将附有聚二甲基硅氧烷绝缘体的底部电极放置在下方。进行了数值模拟以检查磁体形成的势阱的影响。讨论了结构在不同激励水平、分离距离和表面电荷密度下的静态和动态行为。为了开发具有宽带宽的变频系统,通过改变两个磁体之间的距离来改变系统的固有频率,以减小或放大磁力,从而实现单稳态或双稳态振荡。当系统受到振动激励时,梁会振动,从而导致摩擦电层之间产生撞击。收集器电极之间的周期性接触-分离运动会产生交变电信号。我们的理论发现得到了实验验证。本研究的结果有可能为开发有效的能量收集器铺平道路,该收集器能够在广泛的激励频率范围内从环境振动中获取能量。与传统能量收集器相比,在阈值距离处发现频率带宽增加了 120%。非线性冲击驱动的摩擦电能量收集器可以有效拓宽工作频率带宽并增强收集的能量。