本文介绍了一种新型的基于Aerogel的摩擦电纳米生成器(TENG),该纳米生成器(TENG)显示了能量收集和传感应用的卓越性能。基于多酰亚胺的气凝胶膜具有不同的开孔含量水平,可用作Teng的主要接触材料。制造的气凝胶膜已充分表征,以揭示开发材料的化学和机械性能。与完全致密的聚酰亚胺层且无孔隙率相比,聚酰亚胺气凝胶膜的使用显着提高了Teng的性能。这种增强是由于有效表面积的增加,气凝胶开放式电池内的电荷产生以及TENG设备的相对电容的增加所致。孔隙率从零变化到70%的开放式孔隙含量的影响表明,具有50%的气门膜显示出最高的性能,其中获得了40次峰值的峰值敞开电路电压,而峰值短路电流则获得了5 𝜇𝜇𝜇𝜇的峰值短路电流。这些值高于带有数量级的简单聚酰亚胺层的Teng的值。最后,测试了电阻载荷和电容器下提议的teng的性能。因此,这项工作为高性能teng提供了一种有效的方法。
抽象可穿戴的生物电子设备正在迅速发展到小型化和多功能性,具有弹性和舒适性等显着特征。但是,为可穿戴生物电子设备实现可持续的电源仍然是一个巨大的挑战。Triboelectric纳米生成剂(TENGS)通过将不规则的低频生物能源从人体转化为电能,从而提供了有效的解决方案。除了可持续的可穿戴生物电子药物外,收获的电能还提供了丰富的人体感测信息。在此转换过程中,材料的选择在影响tengs的输出性能中起着至关重要的作用。在各种材料中,有机硅橡胶(SR)由于其出色的可塑性,灵活性,舒适性和其他有利的特性而脱颖而出。此外,通过适当的治疗,SR可以实现极端功能,例如稳健性,良好的稳定性,自我修复能力,快速响应等等。在这篇综述中,系统地审查了基于可穿戴SR的Tengs(SR-Tengs)的最新进展,重点是他们在人体不同部位的应用。鉴于SR-Tengs的制造方法在很大程度上决定了其输出性能和敏感性,因此本文介绍了SR-Tengs的设计,包括材料选择,过程调制和结构优化。此外,本文讨论了当前
摘要:随着科技的不断进步,用于增强现实(AR)和虚拟现实(VR)的电子产品逐渐进入大众的视野,这些电子设备的电源也受到了科学家的更多关注。与传统电源相比,摩擦纳米发电机(TENG)由于体积小、转换效率高、能耗低等优点,逐渐被用于可穿戴柔性电子产品,包括AR和VR设备等自供电传感技术中的能量收集,是AR和VR产品中最受欢迎的电源。本文首先概括了TENG的工作方式和基本理论,然后回顾了AR和VR设备中使用的TENG模块,最后总结了TENG制备的材料选择和设计方法。TENG的摩擦层可以由聚合物、金属和无机材料等多种材料制成,其中聚四氟乙烯(PTFE)和聚二甲基硅氧烷(PDMS)是最受欢迎的材料。要提高TENG的性能,必须选用合适的摩擦层材料。因此,针对不同的应用场景,TENG的设计方法对其性能起着重要作用,合理的制备材料和设计方法的选择可以大大提高TENG的工作效率。最后,总结了纳米发电机的研究现状,分析并提出了未来的应用领域,并总结了材料选择的要点。
摘要 机械能因其丰富性而成为一种很有前途的环境能源。摩擦纳米发电机 (TENG) 是一种基于接触起电的有效机械能收集方法。现有的液体基 TENG 可以在不损坏表面的情况下稳定运行;然而,这些 TENG 的输出比固体基 TENG 小得多。值得注意的是,液体直接接触导电材料的液体基 TENG 可以产生超过几 mA 的电流。然而,液体储存器必须具有足够的体积,并且必须提供足够的空间让液体移动以产生电输出。为了确保紧凑轻巧的设计并在低输入频率范围内产生电输出,我们推出了一种移动棒式水基 TENG (MSW-TENG)。所提出的 MSW-TENG 可以分别产生高达 710 V 和 2.9 mA 的开路电压和闭路电流,并可用作自供电安全装置。本研究的结果可以促进TENG在日常应用中的实现。
随着物联网和人工智能的快速发展,对智能轴承传感技术的需求急剧增加。一般的轴承传感器只能识别来自温度或振动的基本信息,远远不能满足自诊断和自维护。最近,基于摩擦电纳米发电机的自供电传感技术为制造智能轴承开辟了一条新途径。在本研究中,摩擦电原理被应用于商用金属聚合物滑动轴承(MPPB),该轴承可以实现自感知,自诊断和自维护。摩擦电MPPB(T-MPPB)的几何结构旨在平衡输出效率和外部负载,并验证了超强的耐久性和负载能力。此外,首次揭示了边界和静水流体润滑下输出变化趋势背后的机制。此外,深度学习算法可以高度准确地对润滑状态进行分类。所提出的 T-MPPB 有可能根据 AI 分类的润滑状况,使用润滑泵实现自我维护。这项研究不仅确立了设计自供电智能 MPPB 的可行性,还展示了一种识别润滑状态的方法,从而通过自供电传感器实现自我诊断和自我维护能力。
可穿戴电子设备,人工智能和第五代无线技术的平行演变创造了一种技术范式,有可能深刻地改变我们的生活。尽管如此,解决与可穿戴电子产品的连续,可持续和普遍的动力相关的局限性仍然是一种瓶颈,以最大程度地提高这些技术可以带来协同作用的指数良好的好处。最近的一个开创性发现表明,通过使用接触电力和静电诱导的耦合效果,互动纳米生成器(TENGS)可以有效地转化不规则的,低频率的无性生物力学能量,从身体转移到电能中,从而使电源可维持和可持续的发动机,从而提供了可维护的启用。已经利用了许多人类动议,以正确和有效地利用这种能量潜力,包括人类的行动。鞋子是日常穿着必不可少的组成部分,可以作为利用这种动力学的绝佳平台。在本文中,全面审查了基于Teng的智能电力发电鞋的最新代表性成就。我们总结了这种方法,不仅可以通过门诊运动清除生物力学能量,而且还可以通过跟踪节奏和节奏的强度来对健康参数进行生物监测,以帮助phithanotanotanotanotanotanotanotanotical fileds。这项工作提供了对理性结构设计,实用应用,场景分析以及基于Teng的智能鞋的性能评估的系统综述。此外,讨论了对即将到来的物联网时代的可持续和普遍的能源解决方案的未来开发的观点。
2012 年,第一篇摩擦纳米发电机 (TENG) 论文发表,距今已有近十年,本综述简要概述了将 TENG 技术应用于关键可持续和可再生能源应用的最新技术进展。本文研究了 TENG 在可穿戴设备、波浪、风能和运输等四个关键领域的应用进展。自诞生以来,TENG 取得了巨大进步,并开发了将其应用于大量免费动能来源的方法。然而,与其他形式的能源生产相比,电力输出仍然很低(大多低于 500 W/m 2),未来的主要挑战似乎是进一步提高输出功率和电流、经济地制造先进的 TENG 以及设计 TENG 以在各种实际环境中终身使用。最后,它讨论了在这些应用领域充分发挥 TENG 潜力所面临的紧迫挑战,特别是从材料和制造的角度来看。需要指出的是,要实现基于 TENG 的设备大规模生产,还需要进行大量的研究和开发。 TENG 将在物联网 (IoT)、人机界面、机器学习应用和“净零排放”技术的未来发展中发挥重要作用。
摘要。周围空气的湿度一直是聚合物底压接充电的主要因素。在气候测试室对尺寸(110 mm x 110 mm x 110 mm x 4.5 mm)的铝(AL)样品(100 mm x 100 mm x 15 mm x 15 mm x 15 mm x 5 mm x 5 mm)的样品擦除的气候测试室和聚乙烯基氯化物(PV)(PVC)板进行了一项研究。在固定温度(25°C)和三种不同的空气相对湿度(20%,40%和80%)的情况下,将样品至少在气候测试室中至少12小时,然后在三层式充电测试台上一起摩擦。然后将支流PP和PVC样品放在静电探头下,以测量样品表面产生的电势。实验的结果表明,当两个聚合物暴露于低环境湿度时,底环的符号会逆转。
机器人技术的最新发展越来越多地强调了传感技术,尤其是触觉感知的重要性,使机器人能够有效地与其环境互动并解释物理相互作用。由于功率效率和低成本,经常研究底层电离机制,用于测量压力和识别材料以增强机器人感知。尽管如此,尽管它们在日常生活中盛行,但仍有使用互动效应来检测弯曲表面的探索有限。在这里,提出了多层结构设计的摩擦多模式触觉传感器(TMTS),以同时识别不同的材料,曲线和压力,从而将不同的方式解耦以启用更准确的检测。通过将传感器连接到机器人的纤维上并利用深度学习分析,定量曲率测量可为对象的详细几何特征提供更精确的见解,而不是仅仅评估其整体形状,因此可以实现具有99.2%精度的12个Grasped对象的自动识别。传感器可以进一步用于准确识别机器人手的不同触摸手势下的物体的柔软度,达到94.1%的精度,证明了其在未来机器人支持的智能社会中的广泛应用。
摘要:灵活的触觉传感器由于其生物适应性和快速信号感知而显示出对人工智能应用的希望。Triboeelectric传感器可实现主动动态触觉传感,同时整合静态压力传感和实时多通道信号传输是进一步开发的关键。在这里,我们提出了一个集成结构,该结构结合了一个用于静态时空映射的电容传感器和一个用于动态触觉识别的摩擦电传感器。4×4像素的液态金属柔性双模式互动耦合触觉传感器(TCTS)阵列可实现7毫米的空间分辨率,表现为0.8 PA的压力检测极限,快速响应6 ms。此外,使用基于MXENE的突触晶体管使用的神经形态计算在90个时期内通过TCTS阵列收集的动态互动信号在90个时期内实现了100%的识别精度,并实现了来自TCTS阵列的动态互动信号,以及从多键盘触觉数据中的交叉空间信息通信中实现了多型触觉数据的交流。结果阐明了在人界面和高级机器人技术中双模式触觉技术的相当大的应用可能性。关键字:互联网耦合,触觉传感器阵列,神经形态计算,人类 - 机器接口,混合现实