“摩擦电”效应是指不同材料接触时电荷的转移,传统上是通过摩擦实现的。通过这种机制,所有移动粒子都会从与管道、阻尼器、过滤元件、其他粒子甚至空气的碰撞中获得少量电荷。当粒子与交流摩擦电发射监测器的探头碰撞或靠近探头时,探头中会通过以下机制之一感应出少量电流:感应(带电粒子产生变化的电磁场,从而在探头中感应出电流),或静电转移(带电粒子接触时转移到探头),或摩擦电生成(来自与探头碰撞的所有粒子)。这些效应与流动是湍流还是层流无关。然而,湍流的增加会导致探头处的有效速度更高,甚至导致粒子在探头外再循环,因此为了获得最佳精度,探头应安装在距离任何弯曲或其他不连续处至少 5 个直径的位置。
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。
PCME LEAK ALERT 65-02 使用 ENVEA 独特的专利 ElectroDynamic™ 探头电气化技术。气流中的颗粒与传感杆相互作用,产生电荷特征。产生的信号经过电子滤波,以拒绝定义频率范围之外的信号(拒绝直流摩擦电信号),使仪器不易受到颗粒速度变化的影响,并消除任何颗粒污染对传感杆的影响(影响摩擦电粉尘监测器)。ElectroDynamic™ 技术不依赖于与探头碰撞的颗粒,因此可以测量更具代表性的烟囱面积,并且不需要较长的传感器探头杆。该杆可以完全绝缘,为高湿度应用提供可靠的解决方案(专利选项)。
随着传感器技术的快速发展,摩洛电纳米生成器(TENGS)已成为智能电子产品的有前途的可持续电源。在此制造了一种新型的3-氨基丙基三乙氧基硅烷(CORE)和2,2-双(羟甲基)丁酸(单体)基于单体超支线聚酯的丁酸(单体)的超支聚酯,可通过便利的单步多粘密度技术(SI-HBP-G2)(SI-HBP-G2)。此外,SI-HBP-G2混合纤维混合物的新型聚偏二氟(PVDF)和不同的重量百分比(0、5、10、15和20 wt%)是由传统的静电纺织技术制备的。使用SEM/EDS,FTIR,NMR和XRD研究表征了准备的Si-HBP-G2及其混合物。使用铝(AL)作为计数器电极评估Si-HBP-G2含量对打开电路电势(V OC)和短路电流(I SC)的影响。其中,Si-HBP-G2/PVDF杂交垫(PG2-15)的15 wt%表现出卓越的电性能。几乎增加了5.9倍(22–130 V)的V OC和I SC的4.9倍(0.71–3.5μa),而不是PVDFFILEBER。这些结果揭示了Si-HBP-G2在底环式性能中的重要性。优化的TENG设备(PG2-15/al-Teng)在100mΩ外部负载下表现出0.2 wm-2的峰值密度。最后,PG2-15/al-Teng实际上展示了实时应用能源收集应用,例如为100个LED和秒表供电。
柔性能源设备是下一代可穿戴电子产品的基础。柔性能源设备有望具有多种功能,例如从光到电和从电到光的转换、摩擦电能产生能量、能量存储等。这些功能可以通过太阳能电池、发光二极管 (LED)、摩擦纳米发电机 (TENG)、电池和超级电容器等有效实现。柔性能源设备可以集成到柔性、可穿戴和/或便携式平台中,从而在信息、能源、医疗、国防等领域具有广泛的应用前景。然而,与刚性能源设备相比,柔性能源设备面临着更多挑战,需要在制造技术、材料创新、新颖结构设计和深入物理理解方面取得更多突破和研究努力。
以下出版物Jing,X.,Li,H.,Mi,H.-Y.,Feng,P.-Y.,Tao,X.,Liu,Y.,Liu,C。,&Shen,C。(2020)。具有坚硬的界面键合和高能量输出的柔性半透明双电凝胶水凝胶基于底环的纳米生成器[10.1039/c9tc06937b]。材料化学杂志C,8(17),5752-5760可在https://dx.doi.org/10.1039/c9tc06937b上找到。
智能厕所为人们对人的健康的长期分析提供了一个可行的平台。识别的通用解决方案基于相机或射频标识(RFID)技术,但对隐私问题感到怀疑。在这里,我们展示了基于Triboelectric压力传感器阵列的厕所(AI-Toilet)的人工智能,该阵列可提供低成本和易于部署软件的更私人方法。厕所座椅上的压力传感器阵列由10个基于纺织品的摩擦电传感器组成,可以利用单个用户座椅座位的不同压力分布来获取生物特征识别信息。6个用户可以使用深度学习正确识别90%以上的精度。压力传感器的信号也可用于记录厕所上的座位时间。系统集成了一个相机传感器,通过与尿液图进行比较并使用深度学习对对象的类型和数量进行分类来分析模拟尿液。使用压力传感器数组,包括两因素用户识别和整个座位时间,以及尿液分析和粪便分析的数据自动转移到云系统中,并在用户的移动设备中进一步显示,以更好地跟踪其健康状况。
简介:自阿波罗时代以来,被尘埃污染被确定为卢纳尔和更常见的无空体的重要风险,探索误差([1] - [2])。对于未来月球的下一个任务,漫游者产生的尘埃动员和 /或机器人活动需要谨慎。它可能起源于地平线发光([3] - [4])。在这两种情况下,在粘附或尘埃的粘附性中发挥作用的机制均由静电力控制。这些力是由在灰尘和覆盖材料表面存储的电荷引起的。电荷载体是由月球等离子体环境产生的,阴影和阳光表面之间存在显着差异,并且也通过Triboelectric效应。缓解技术应受益于对这些过程的更好地说明。
气体固定式摩擦式纳米生成器(GS-Tengs)为设计自动传感器设计提供了有希望的途径。然而,GS-Tengs低电输出的内在限制可能会影响传感系统的准确性和敏感性。在这里,我们通过整合具有铁电(3,3-二氟西丁基铵)2 CUCL 4 [(DF-CBA)2 CUCL 4]填充剂的胶粘剂聚(硅氧烷 - 二苯基乙二醇 - 尿氨基烷)(PSDU)弹性剂来开发多孔复合材料。psdu,一种本质上具有交替柔软的段和超分子键的底层底层负面材料,可为复合材料赋予出色的可压缩性,粘附和自我修复特性。同时,(DF-CBA)2 CUCL 4作为功能填充剂的掺入利用氢键网络的形成来增强电荷转移过程。这些填充剂通过电动波动过程有助于电荷积累,从而使功率输出的提高超过1400倍,高于基于PSDU的密集的GS-Teng。挖掘到多孔聚(硅氧烷 - 二苯基乙酰基 - 氨基甲烷) - 玻璃盐(PSDU-PK)GS-TENGS的多功能性能上,已经证明了手势/食物识别和双模式感测系统等应用,表明它们在可耐磨性的电力和智能农业中有希望的潜在潜在的潜在潜力。
气体固定式摩擦式纳米生成器(GS-Tengs)为设计自动传感器设计提供了有希望的途径。然而,GS-Tengs低电输出的内在限制可能会影响传感系统的准确性和敏感性。在这里,我们通过整合具有铁电(3,3-二氟西丁基铵)2 CUCL 4 [(DF-CBA)2 CUCL 4]填充剂的胶粘剂聚(硅氧烷 - 二苯基乙二醇 - 尿氨基烷)(PSDU)弹性剂来开发多孔复合材料。psdu,一种本质上具有交替柔软的段和超分子键的底层底层负面材料,可为复合材料赋予出色的可压缩性,粘附和自我修复特性。同时,(DF-CBA)2 CUCL 4作为功能填充剂的掺入利用氢键网络的形成来增强电荷转移过程。这些填充剂通过电动波动过程有助于电荷积累,从而使功率输出的提高超过1400倍,高于基于PSDU的密集的GS-Teng。挖掘到多孔聚(硅氧烷 - 二苯基乙酰基 - 氨基甲烷) - 玻璃盐(PSDU-PK)GS-TENGS的多功能性能上,已经证明了手势/食物识别和双模式感测系统等应用,表明它们在可耐磨性的电力和智能农业中有希望的潜在潜在的潜在潜力。