摘要:我们每天行驶的道路都受到多种能源的影响(机械负荷、太阳辐射、热量、空气流动等),这些能源可用于使道路的常见系统和设备(即照明、视频监控和交通监控系统)实现能量自主。几十年来,研究小组已经开发出许多能够从与道路相关的能源中获取能量的技术:用于汽车压力和振动的电磁、压电和摩擦电收集器、用于阳光的光伏模块、用于热量的热电溶液和热电材料以及针对低速风(例如由移动车辆产生的风)优化的风力涡轮机。因此,本文探讨了从道路上可用的能源中获取能量的现有技术,包括自然能源和与车辆运输相关的能源。首先,为了将它们置于应用场景中,我们确定并描述了可用的能源和转换机制,并讨论了开发适用于道路的收集器必须考虑的主要要求。随后,概述了科学文献中提出的从道路回收能量的能量收集解决方案,并根据转换方法(即压电、摩擦电、电磁、光伏等)和拟议的系统架构对其进行分类。随后,介绍了市场上可用于从道路回收能量的商业系统,重点介绍了它们的架构、性能和安装方法。最后,对每个设备类别(即科学作品和商业产品)进行比较分析,提供见解以确定开发未来自给自足的智能道路最有前途的解决方案和技术。
Figure 8.The working mechanism and sensing performance of the Wood-based Triboelectric Self-powered Sensors (WTSS).(a) Schematic illustration of the working principle of WTSS; (b) Volatile Organic Compounds (VOCs) of WTSS under varying pressures; (c) VOCs of WTSS at different stress levels; (d) Increasing VOCs of WTSS with escalating pressure.Inset: An enlarged view of the low-pressure region; (e) VOCs of WTSS and input pressure at frequencies of 0.5, 1, and 2 Hz [41] 图 8.木质基摩擦电自驱动传感器 (WTSS) 的工作机理和传感性能, (a) WTSS 工作原理示意图; (b) WTSS 在不同压力 下的挥发性有机化合物 (VOCs) ; (c) WTSS 在不同应力水平下的挥发性有机化合物 (VOCs) ; (d) 随着压力增加, WTSS 的挥发性有机化合物 (VOCs) 逐渐增加。插图:低压区域的放大视图; (e) 在 0.5 、 1 和 2Hz 的频率下, WTSS 的挥发性 有机化合物 (VOCs) 与输入压力的关系 [41]
摘要:近年来,随着质量生产和能源消耗的增加,便携式和可穿戴的个人电子设备已迅速发展,从而造成了能源危机。使用寿命和环境危害有限的电池和超级电容器驱动着寻找新的,环保和可再生能源的需求。一个想法是利用人类运动的能量,并使用能量收集设备(Piezoelectric纳米发育仪(PENGS),Triboelectric纳米生成器(TENGS)和杂种。它们的特征是多种功能,例如轻度,灵活性,低成本,材料丰富等等。这些设备提供了使用物联网,AI或HMI等新技术的机会,并创建智能的自动传感器,执行器和自动植入/可穿戴设备。本评论的重点是彭,tengs和混合设备的最新示例,用于可穿戴和可植入的自动系统。讨论了所选示例的操作,微/纳米级材料的选择和制造过程的基本机制。当前的挑战和对纳米发育仪未来的前景。
NTU 团队开发的发电织物是一种能量收集装置,可将日常生活中最小的身体运动产生的振动转化为电能。原型织物以两种方式产生电能:当它被按压或挤压时(压电效应),以及当它与其他材料(如皮肤或橡胶手套)接触或摩擦时(摩擦电效应)。为了制造原型,科学家首先通过丝网印刷一种由银和苯乙烯-乙烯-丁烯-苯乙烯 (SEBS) 组成的“墨水”来制作可拉伸电极,SEBS 是一种橡胶状材料,常用于牙胶和车把握把,可使其更具弹性和防水。然后将这种可拉伸电极连接到一块纳米纤维织物上,该织物由两种主要成分组成:聚偏氟乙烯-六氟丙烯 (PVDFHPF),一种在压缩、弯曲或拉伸时产生电荷的聚合物;以及无铅钙钛矿,一种在太阳能电池和 LED 领域很有前途的材料。
自 2004 年以来,随着二维 (2D) 材料的迅猛发展,这些纳米材料在许多应用领域引起了广泛关注,包括储能、[1] 催化、[8] 柔性电子 [9] 和摩擦纳米发电机。[12] MXenes 于 2011 年被发现,是几原子厚的层状二维过渡金属碳化物、氮化物和碳氮化物。[13] MXene 单片的化学式为 M n +1 X n T x (n = 1 至 4),它描述了交替的过渡金属层(M:元素周期表的第 3 – 6 族)与具有键合终端的碳/氮(X)层(T x:-O 2 、-F 2 、-(OH) 2 、-Cl 2 或它们的组合)交错在外部过渡金属表面上。 [6, 14, 15] MXenes 的晶体结构和化学式来源于其 3D
摘要:直接金属沉积(DMD)可用于表面的覆层以及修复零件和功能的修复和增材制造。过程监视和控制方法可确保制造过程中的质量一致。通过光发射光谱进行过程辐射进行监测可以提供有关过程条件和沉积层的信息。这项工作的目的是使用光谱仪从过程中测量光学排放,并识别光谱中的元素线。单光谱已从该过程中记录下来。基于CO的粉末(METCOCLAD21)的单个轨道在S235碱基材料上被覆盖。已经研究了各种过程参数对元素线发病率和强度的影响。此外,已经对光谱排放的激光束,粉末射流和底物之间的相互作用进行了单独检查。结果表明元素线不经常发生。因此,单光谱被分类为包括元素线(A型)和不包括元素线(B型)的光谱。此外,只能检测到非离子元素,铬经常出现。表明,增加激光功率会增加A型光谱的发生率和特定CR I线的强度。,元素线仅在激光束与沉积层的熔体池相互作用中经常发生。
对最常见的物理刺激的高度敏感和抗湿度的检测对于实时监测中的实际应用至关重要。在这里,据报道,一种简单而有效的策略可以达到高度湿度稳定的杂种复合材料,该复合材料能够同时且准确的压力和温度传感在单个传感器中。改善的电子性能是由于POLE(3,-4-甲基二氧二苯乙烯)(PEDOT)的平面性提高以及Pe-dot之间的电荷转移:聚苯乙烯磺酸盐(PEDOT:PSS)和多壁碳纳米管(CNT)(CNTS)通过强效应强度的相互作用。杂交复合材料中强大的形态引起的首选电子途径是高湿度稳定性的原因。这项研究还表明,该传感器对智能对象识别具有巨大的作用,高度为97.78%。以及摩尔电纳米生成剂(TENG)的位置检测能力,在智能分类方面,在不看到三重传感系统的潜在工业应用方面具有优势。
摘要 - 振动感知可以帮助机器人识别其动态状态以探索周围环境。但是,软机器人的内在可拉伸性为整合振动传感器带来了挑战。这项研究引入了一种创新的可拉伸电子皮肤(E-SKIN),可促进软机器人中的振动本体感受。以大约0.1 mm的厚度结构,该超薄e-Skin是使用带有液态金属颗粒(LMP)的屏幕打印技术生产的,并结合了Kirigami设计以进行无缝集成。基于Triboelectric纳米生成器的感应机制的E-Skin作用,该机制将机械振动转导为没有外部电源的电信号。通过分析由软机器人的动态运动产生的振动信号,E-Skin显示了广泛的应用。从软机器人手指的滑动运动的振动信号中,可以以99%的精度区分17种不同的纹理。此外,对软机器人抓手的摇摆运动的振动信号的分析可以估算其抓地的容器内部晶粒的类型和重量,分别达到97.7%和95.3%的精确度。因此,这项工作提出了一种实现软机器人振动本体感受的新方法,从而扩大了动态本体感受在软机器人技术中的应用。
人类对卓越生活品质的不断追求是智能化和多功能智能家居系统不断发展的驱动力。随着人工智能 (AI) 和物联网 (IoT) 的快速发展,智能家居取得了长足的进步。然而,智能家居中应用的各种传感器的进一步发展受到大功耗的限制。基于纺织品的摩擦纳米发电机 (TENG) 因其多功能性和广泛的潜在应用范围而成为下一代可穿戴电子产品和智能家居的有希望的候选者。在此,我们提出了具有良好耐磨性和性能的基于纺织品的微结构 TENG。此外,我们将基于纺织品的微结构 TENG 与其他功能元素相结合,开发出智能袜子,用于传递用户身份、健康状况和活动的信息,并展示了一种人工智能厕所,以低成本和易于部署的软件提供更私密的方法。这种多功能可穿戴纺织系统推动了运动监测、医疗保健、身份识别和未来智能家居应用的实现。
全球能源消耗的快速增长以及对可持续和可再生能源的需求不断增长,促使人们进行大量研究以利用各种来源的能源。其中,最有前途的方法是纳米发电机 (NG) 和太阳能电池 (SC),它们各自为能量收集提供了创新的解决方案。这篇综述论文对 NG 和 SC 的集成进行了全面分析,探讨了先进的混合结构及其多种应用。首先,概述了 NG 和 SC 的原理和工作机制,以实现无缝混合集成。然后,讨论了各种设计策略,例如具有不同类型 SC 的压电和摩擦电 NG。最后,探索了受益于 NG 和 SC 协同集成的广泛应用,包括自供电电子设备、可穿戴设备、环境监测和无线传感器网络。强调了这些混合系统在满足现实世界的能源需求和促进开发可持续和自给自足的技术方面的潜力。总之,这篇评论对 NG 和 SC 集成领域的最新发展提供了宝贵的见解,阐明了先进的混合结构及其多种应用。