在这里,我们提出了一种镜面对称魔术角扭曲三层石墨烯的理论。通过具有远距离隧道矩阵元素的哈伯德模型来描述电子特性。通过求解平均场哈伯德模型获得电子性能。我们获得具有特征性平坦带和狄拉克锥体的带结构。在电荷中立性时,打开电子电子相互作用会导致金属至抗磁相变,其Hubbard相互作用强度比其他石墨烯多层小得多。我们分析了抗铁磁状态的固定性对六角硼氮化物封装引起的对称破裂的性能,以及由将狄拉克锥与平面带混合的电场的应用引起的镜像破坏。此外,我们探索了系统的拓扑特性,揭示了隐藏的量子几何形状。尽管平坦的频带为零,但在MoiréBrillouin区域上的多型浆果曲率分布表现出非平凡的结构。最后,我们提出了一种调整此量子几何形状的机制,提供了控制系统拓扑特性的途径。
分数量子霍尔 (FQH) 相是由于强电子相互作用而出现的,其特征是任意子准粒子,每个准粒子都具有独特的拓扑参数、分数电荷和统计数据。相反,整数量子霍尔 (IQH) 效应可以从非相互作用电子的能带拓扑中理解。我们报告了所有 FQH 和 IQH 跃迁中临界行为的令人惊讶的超普适性。与预期的状态相关临界指数相反,我们的研究结果表明,对于分数和整数量子霍尔跃迁,临界标度指数 κ = 0.41 ± 0.02 和局域长度指数 γ = 2.4 ± 0.2 相同。从中,我们提取了动力学指数 z ≈ 1 的值。我们已经在超高迁移率三层石墨烯器件中实现了这一点,其中金属屏蔽层靠近传导通道。在之前的研究中,由于在传统半导体异质结构中 κ 的测量值存在显著的样本间差异,而长程关联无序占主导地位,因此在各种量子霍尔相变中观察到的这些全局临界指数被掩盖了。我们表明,稳健的标度指数在短程无序关联的极限下是有效的。
最近在扭曲双层中进行的扫描隧道显微镜实验[K。 P. Nuckolls等。,自然(伦敦)620,525(2023)]和三层[H. Kim等。,自然(伦敦)623,942(2023)]石墨烯已经揭示了魔法 - 角石墨烯中Kekulé电荷密度波顺序的无处不在。大多数样品都适度紧张,并显示出与理论预测相一致的“kekulé螺旋”(IKS)订单,涉及对Moiré超距离的规模单次调制的石墨烯级电荷密度失真。但是,超级应变双层样品相反,在莫伊尔尺度上显示了石墨烯尺度的kekulé电荷顺序。通过理论预料到了这个秩序,特别是在填充因子ν= -2附近突出的序列,该理论预测了低应变处的时间反转破裂的kekulé电流阶。我们表明,包括Moiré电子与石墨烯尺度光学区 - 角色(ZC)声子的耦合,可以稳定在|处的均匀的Kekulé电荷有序状态。 ν| = 2具有量化的拓扑(自旋或异常大厅)响应。我们的工作清楚地表明,这种语音驱动的电子顺序的选择如何出现在Moiré石墨烯的强耦合方案中。
A.Loukkal 1*、M.Lematre 1、M.Bavencoffe 1、M.Lethiecq 1 1 GREMAN UMR 7347,图尔大学,INSA Centre Val de Loire,3 rue de la Chocolaterie,布卢瓦,法国 abderrahmane.loukkal@univ-tours.fr 摘要 微电子行业对于开发用于多层结构健康控制和诊断的无损工具和方法的需求日益增加。这些工具的目的是检测诸如分层、夹杂和微裂纹等问题。本文的目的是研究不完美界面对多层结构中波传播的影响。这种结构类型代表了许多微电子元件的典型架构。这项研究将基于反射系数和导波色散曲线的计算。所研究的结构是各向同性的三层,其中两个金属层通过环氧树脂制成的粘合层粘合在一起。进行了比较,以便从数字上评估粘合层的几种特性对导波行为的影响。此外,还实施了不完美粘弹性界面层模型 [1],以模拟金属层之间的不同粘附质量。关键词:反射系数;多层;不完美界面;导波;色散曲线;V(z,f) 方法;建模。
摘要:这项工作研究了有吸引力的聚合物融化中的纳米颗粒(NP)扩散,并揭示了两种不同的动态模式:车辆和核心 - 壳。通过扩散氧化铝NP(R np = 6.5 nm)和二氧化硅NP(R NP = 8.3和26.2 nm)中的各种分子量(14-1220 kDa)的聚(2-乙烯基吡啶)融化,我们检查了R np,Polymer size(R g)和表面化学的影响。使用飞行时间二级离子质谱和三层样品,我们测量横截面纳米颗粒浓度曲线作为退火时间的函数,并提取纳米颗粒扩散系数。小二氧化硅NP(r g / r np = 0.12 - 3.6)显示核心 - 壳行为,而氧化铝NP(r g / r np = 0.50 - 4.6)急剧差异,聚合物分子量的增加,与理论上预测的车辆扩散保持一致。从核心 - 壳到车辆扩散的过渡是分子量增加和较弱的NP/聚合物吸引力的结果,并促进了单体解吸时间的估计值。■简介
专业摘要我着迷于新颖的仪器可以改变我们可以理解纳米级系统的异国物理学的方式。在研究生院我开发了一种技术,可以有效研究二维(2D)材料的超快光电学。6,我揭示了摩西2 -WSE 2异质结构的层间激子中的激子 - 偶联,在2d Mote 2中,在2d Mote 2中的4个热载体物理学,2 -Mote液相发表于自然光子学上。7我已经对生物系统进行了建模,特别是专注于量子结构在减少光合作用中有害噪声中的重要性,该噪声发表在科学上。5在我的博士后中,我在尖端(NSOT)磁力测定技术上学习了纳米Quid,并将其与热力学压缩性测量相结合,以探索铁磁性相干性和自旋轨道偶联,以在Trilrayer Graplene intaly in yalthy insical中的形成型rhombohedralayer Grapline intaly insicals的对称性阶段中的旋转耦合。3最近,我应用了这种方法来阐明菱形石墨烯中非常规超导性的性质。1教育2020博士学位在加利福尼亚大学河滨大学,2014年M.S. 加利福尼亚大学物理大学,2013年河滨大学 华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young1教育2020博士学位在加利福尼亚大学河滨大学,2014年M.S.加利福尼亚大学物理大学,2013年河滨大学 华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young加利福尼亚大学物理大学,2013年河滨大学华盛顿大学物理大学研究经验:加利福尼亚大学圣塔芭芭拉分校的博士后研究 - 目前的PI:Andrea Young
当前最新的超导量子盘冷却至极低的脾气,以避免反应的来源。较高的量子工作温度将显着提高可用的冷却能力,这对于扩大量子计算体系结构中的量子数量和在需要增加散热量的实验中的量子量。要在较高温度下操作超导Qubits,有必要解决两粒子的脱碳(对于高于160 mk以上的铝连接处而言变得很重要),并从热微波光子(高于50 mk的问题)中进行脱落。使用低损失尼伯三利叶连接,由于尼伯群的高导体过渡温度较高,它们对准粒子的敏感性降低了,我们制造的频率高于先前研究的频率,最高为24 GHz。我们测量了约1 µ s的去碳和去化性时间,对应于大约10 5的平均Qubit质量因子,并发现不受1 k的准粒子的影响,不放松的准粒子不受欢迎,我们能够从纯粹的热源中探索,发现我们的Qubits可以探索大约250米,从而可以探索纯粹的热源,从而探索了距离。这些量子位的热弹性创建了用于扩展量子处理器的新选项,启用具有高热量耗散预算的混合量子实验,并引入了一个材料平台,以供更高频率乘坐。
基于电阻转换(RS)效应的非挥发性存储设备由于其出色的特征性(例如良好的尺寸可伸缩性和较小的操作电压)而被认为是未来内存应用的最有前途的技术。RS效应基于在涂在电极上的电压下安装在金属电极之间的介电膜中的导电膜(CF)的生长[1,2]。虽然HFO 2是重新拉统设备的最广泛研究的电介质之一[3],但交替分层的纳米材料引起了人们的兴趣[4],因为筛选了介电层最适当的材料组合是Reram Fabrication的介电层的最佳组合。在以前进行的几项作品中,HFO 2 -AL 2 O 3纤维与单个HFO 2和Al 2 O 3薄膜相比,已经证明了高级RS特性。电阻开关行为已在Al 2 O 3 / HFO 2 BiLayer [5,6,7],Al 2 O 3 / HFO 2 / Al 2 O 3 Trilayer [4,7]和Pentalayer [7]结构Ald -Grown在225-250°C处,总厚度达到20 nm。在另一项研究中,Al 2 O 3 / HFO 2 / Al 2 O 3在150ºC下生长的三层,厚度为12 nm,能够证明多级切换特性[8]。周期性的HFO 2 -AL 2 O 3多层含有等量的HF和Al在250ºC时的厚度为6.5 nm [9]。然而,在后一项研究中,没有发现成分层的厚度。hf x al 1 - x o y纤维在240ºC下生长,分级填充,从而从9:1到1:4 [10]变化了HFO 2:Al 2 O 3 ALD循环比率。另一项研究表明,HFO 2 -AL 2 O 3双层的30 nm厚的纳米胺由1.2
对于La 3 Ni 2 O 7的光浮带(OFZ)生长,我们在1100°C的盒子炉中干燥了La 2 O 3粉(99.99%Alfa Aesar)。随后,通过将La 2 O 3和NiO(99.998%Alfa Aesar)混合而成,根据3:2:NI:NI:NI:混合物磨碎20分钟,并在氧化铝坩埚中转移到盒子炉中,然后将其加热至1100℃,持续24小时。圆柱形饲料和种子棒是通过烧结材料的球磨制制备的,这些材料被填充成直径为6 mm的橡胶形式。使用Riken Type S1-120 70 kN按下,将橡胶撤离并以不锈钢形式撤离并压制。所有杆在1150°C中进行热处理。单晶生长是在高压,高温的OFZ炉(HKZ型,Scidre GmbH,德国德累斯顿,德国)中进行的,可以在生长室中的气体压力高达300 bar。生长室(蓝宝石单晶)的长度为72毫米,壁厚为20 mm。在5 kW下运行的XE ARC灯用作HKZ垂直镜对齐中的加热源。然后将14厘米进料和4厘米种子杆在钢架上对齐HKZ,然后安装高压室。随后,腔室用15杆氧气加压,并以0.1 L/min的流速保持。连接熔融区后,通过以2 mm/h的速度移动种子来执行生长。2和3中的第3条]。98(1)Ni 1。 99(1)O 6。 83(7)。 该样本将称为La 3 Ni 2 O 6。98(1)Ni 1。99(1)O 6。83(7)。 该样本将称为La 3 Ni 2 O 6。83(7)。该样本将称为La 3 Ni 2 O 6。我们发现,这种生长在15 bar的氧部分压力下产生单晶体,具有LA 3 Ni 2 O 7 -X的化学计量,并交替单层(ML)Trilayer(TL)堆叠[见图[见图。通过电感耦合等离子体质谱法(ICP-OES)和气体提取对生长晶体进行的化学计量分析表明,LA 2的组成。83在以下。未确定化学计量法的样本将表示为La 3 Ni 2 O 7-x。在600℃下在600 bar o 2大气中退火的单晶将表示为la 3 ni 2 o 7。
石墨烯的生产是在金属基底上用化学气相沉积 (CVD) 方法进行的,因为该方法可重复、可扩展,且能获得具有大畴尺寸的高质量层。到目前为止,各种过渡金属已作为基底进行了测试 [4–10],其中铜箔由于碳溶解度低,已被证明是控制单层和双层生长的合适基底。[11–14] 通常,铜箔上石墨烯畴的成核以随机取向发生,从而形成多晶单层石墨烯片 [15] 甚至扭曲的双层石墨烯。[16] 相邻畴合并后会引入晶界,从而限制载流子迁移率。[17] 使用六边形 Cu(111) 表面作为基底,结果表明石墨烯成核发生在与基底晶格对准的位置,从而有效减少晶界。 [18,19] 在实际应用中,需要将石墨烯从金属基底转移到非金属目标基底(如 SiO 2 、SiC)。在许多情况下,转移层的质量不如原生石墨烯。众所周知,基底的选择可能会影响石墨烯的特性。[20–22] 一方面,Kraus 等人早些时候提出,铜基底的刻面可能会压印在石墨烯上,即使在平坦的基底上,转移后也会导致层起波纹。[23] 另一方面,研究表明,在 SiO 2 上转移的单晶石墨烯中的纳米波纹会降低电子迁移率。[24] 此外,在 Bernal 堆叠双层石墨烯中,在不同基底上都观察到了应变诱导的位错线[25–27],这可能会限制载流子迁移率。即使在目标基底上转移后,这些位错也可能存在。了解这些位错的形成和生长衬底的影响将为设计双层石墨烯和其他堆叠二维材料的特性开辟一条道路。我们利用低能电子显微镜 (LEEM) 和衍射 (LEED) 研究了在 Cu(111) 衬底上以及转移到外延缓冲层后 CVD 生长的石墨烯的厚度和晶体度。我们发现,在石墨烯生长过程中,衬底表面会重新构建为小平面,即使在单层石墨烯中也会留下波纹结构。LEEM 暗场测量揭示了衬底小平面在双层(和三层)石墨烯中堆叠域形成过程中的作用,这些堆叠域在转移过程中得以保留。