主题页 主题页 简介 2 22 mm 紧凑型金属安全限位开关,带 5 针微型 (M12) 插头连接器 85 变更摘要 2 保护锁定开关 - 固态开关(OSSD 安全输出) 2 NC 22 mm 紧凑型金属安全限位开关 88 440G-MZ 保护锁定开关 3 440G-LZ 保护锁定开关 6 2 NC 紧凑型金属安全限位开关,带 5 针微型 (M12) 插头连接器 90 TLS-Z GD2 保护锁定开关 9 保护锁定开关 - 机电开关(无电压触点) 2 NC 22 mm 金属安全限位开关,带 4 针微型 (M12) 插头连接器 93 TLS-GD2 保护锁定开关 13 440G-MT 保护锁定开关 19 22 mm 塑料外壳 IEC 型安全限位开关开关 96 Atlas 5 防护锁定开关 23 联锁开关 - 机电式(无电压触点) 440G-S Spartan 防护锁定开关 27 Elf 微型舌片联锁开关 99 铰链开关 Cadet 3 舌片联锁开关 103 Sprite 微型铰链联锁开关 31 Trojan T15 舌片联锁开关 107 Ensign 3 铰链联锁开关 35 Trojan 5 和 6 通用舌片联锁开关 111 Rotacam 重型铰链联锁开关 39 MT-GD2 舌片联锁开关 116 具有防护锁定功能的联锁开关,用于过程保护 安全钥匙联锁开关 440G-EZ 电磁安全开关 43 旋转开关 126 联锁开关 - 非接触式开关操作 131 SensaGuard 非接触式联锁开关46 电磁释放装置 133 磁编码非接触式联锁开关 51 电子延时装置 137 Ferrogard 1、2、20 和 21 非接触式联锁开关 54 钥匙交换装置 139 Ferrogard 3、4 和 5 非接触式联锁开关 57 螺栓联锁 142 Ferrogard 6、9、10、13 和 14 非接触式联锁开关 59 操作 143 Ferrogard GD2 非接触式联锁开关 63 门禁和链条锁闭式钥匙联锁开关 149 Ferrogard GS1 和 GS2 非接触式联锁开关 66 Prosafe Slamlock 机械联锁开关 155 Sipha 传感器 68 Prosafe Slamlock 电气联锁开关 158 紧凑型安全限位开关 微型阀门锁闭式钥匙联锁开关163 1 NC 22 mm 紧凑型金属安全限位开关 73 开关设备适配器 164 IMP 安全限位开关 76 配件 166
活细胞中病毒感染的实时感知对于病毒学研究和抗病毒药发育至关重要。但是,现有方法面临低信号灵敏度的挑战以及病毒操纵和细胞固定的必要性。在这里,我们开发了一种病毒核糖开关(VRIBO)方法,该方法采用病毒复制酶在病毒感染后诱导转基因表达。Vribo旨在检测活细胞中的病毒实时转录和复制,这响应触发了报告基因和治疗基因的翻译。通过整合病毒包装序列,可以通过后代病毒体将Vribo传播到相邻细胞,从而有效地充当“特洛伊木马”。由于跨冠状病毒的顺式作用RNA结构保存,负链Vribo元件显示出有效检测了几种冠状病毒,包括229E和OC43。值得注意的是,Vribo充当双重用途系统,既充当感染检测器和诱导抗病毒系统。vribo具有基本病毒学研究应用的潜力,可以在改善未来冠状病毒的mRNA药物的诱导表达方面采用。
抽象抗体 - 药物缀合物(ADC)是一种相对较新的抗癌药,旨在将单克隆抗体的选择性与化学疗法的细胞杀伤特性合并。它们通常被描述为治疗性武器的“特洛伊木马”,因为它们的能力将细胞毒性药物(有效载荷)直接传递到肿瘤空间中,从而将化学疗法转化为靶向药物。最近已批准了三个新型ADC,即分别针对HER2,Trop2和Nectin4,分别针对Trastuzumab deruxtecan,Sacituzumab Govitecan和Enfortumab Vedotin。由于这些药物依赖于工程技术的逐步进步,对这些药物敏感的疾病范围以及它们的适应症正在连续扩张。几个新颖的ADC正在评估中,探索了新的潜在目标以及创新的有效载荷。本综述旨在提供这些化合物背后的技术的摘要,并介绍在实体瘤中批准的最新ADC,以及描述正在研究的ADC和新策略中的新目标,以优化其在实体瘤中的效果。关键字:实体瘤,抗体 - 药物结合物,癌症,ADCS
量子密钥分发 (QKD) 是一种使用光的量子态作为可信信使的通信方法,这样,任何对信息传输的窃听企图都会被揭示为对状态进行测量过程的底层量子物理的一部分。1-3 虽然基本协议在其假设范围内是安全的,但实际的 QKD 系统可能会因原始协议方案的不完善实现、准备和检测设备不完善,或通过侧信道将信息泄露出两个通信伙伴所谓的安全范围而表现出漏洞。4-6 已经通过技术措施和高级协议识别和解决了这类漏洞。例如,光子数分裂攻击(其中单个光子被微弱的相干脉冲近似)、7,8 特洛伊木马攻击、3,9 各种定时攻击、10-12 以及各类信息泄漏到寄生自由度中。 QKD 系统最关键的漏洞可能是针对单光子探测器的探测器致盲/假态攻击。13 实验证明,这种攻击有效
神经网络越来越多地用于安全至关重要。这引起了人们对验证或认证神经网络逻辑编码属性的兴趣。先前的工作在很大程度上是在检查存在属性方面的基础,其中目标是检查是否存在任何违反给定属性感兴趣的属性的输入。但是,神经网络训练是一个随机过程,其分析中出现的许多问题需要概率和定量推理,即估计多少个输入sat-Isfy A给定特性。为此,我们的论文提出了一个新颖而有原则的框架,以定量验证神经网络上指定的逻辑证书。我们的框架是第一个提供PAC风格的声音保证的框架,因为其定量估计值在真实计数的可控且有限的误差范围内。我们通过构建一个名为NPAQ 1的原型工具来实例化算法框架,该工具可以通过二进制神经网络检查丰富的属性。我们展示了新兴的安全分析如何在3个应用程序中利用我们的框架:量化对对抗性输入的鲁棒性,特洛伊木马攻击的疗效以及给定神经网络的公平/偏见。
高级别胶质瘤,尤其是弥漫性中线胶质瘤、儿童 H3K27 变异和成人胶质母细胞瘤,是最致命的脑肿瘤,预后不佳。现代医学的发展不断应用于寻找治愈方法,尽管找到正确的策略仍然难以捉摸。绕过血脑屏障是治疗脑肿瘤的最大挑战之一。寻找特洛伊木马来穿越这一屏障并将治疗药物输送到大脑的猫捉老鼠游戏是一场漫长而艰苦的斗争。研究正在进行中,以寻找新的可行方法来达到大脑中的特定目标,特别关注无法手术或复发的脑肿瘤。迄今为止,已经测试了许多选项和选项组合,并将继续进行测试,以寻找最有效和毒性最小的治疗模式。尽管改进通常很小而且进展缓慢,但其中一些策略已经显示出希望,为找到治愈方法带来了希望之光。在这篇评论中,我们讨论了最近的发现,这些发现阐明了有希望但非典型的针对胶质瘤的策略,以及这项工作对开发新治疗方案的影响。
AE 对抗性示例 AI 人工智能 API 应用程序接口 BDP 边界差分隐私 BIM 基本迭代方法 CIFAR 加拿大高级研究院 CNN 卷积神经网络 CW Carlini 和 Wagner(攻击) DNN 深度神经网络 DP-SGD 差分隐私随机梯度下降 FGSM 快速梯度符号法 GNN 图形神经网络 IP 知识产权 JPEG 联合图像专家组 JSMA 基于雅可比矩阵的显著性图 KNHT 键控非参数假设检验 L-BFGS 有限内存 Broyden-Fletcher-Goldfarb-Shanno(算法) MNIST 改良的国家标准与技术研究所 MNTD 元神经木马检测 PATE 教师集合的私有聚合 PCA 主成分分析 PGD 项目梯度下降 PRADA 防止 DNN 模型窃取攻击 ReLU 整流线性单元 RNN 循环神经网络 RONI 拒绝负面影响 SAI 保护人工智能 SAT 可满足性 SGD 随机梯度下降 SMT 可满足性 模理论 STRIP STRong 有意扰动 TRIM 基于修剪的算法 ULP 通用试金石
2022 年 5 月 11 日,欧盟委员会(以下简称“委员会”)发布了其拟议法规,规定了预防和打击儿童性虐待的规则 1(以下简称“拟议法规”)。拟议法规旨在建立一个明确而协调的法律框架,以更好地识别、保护和支持儿童性虐待(以下简称“CSA”)的受害者,特别是通过澄清在线服务提供商在在线 CSA 方面的规则和责任。它旨在为提供商提供法律确定性,以确定他们评估和减轻风险的责任,并在必要时以符合《欧洲联盟基本权利宪章》(以下简称“欧盟宪章”)2 中规定的基本权利和欧盟法律的一般原则的方式,检测、报告和删除已知的儿童性虐待材料(以下简称“CSAM”)、新的 CSAM 或在其服务上招揽儿童的行为。拟议法规征求了广泛利益相关者的反馈,并受到了强烈的赞扬和严厉的批评。一些人认为,拟议的法规是让私营部门对其平台和服务上发生的网络 CSA 负责的关键一步,而另一些人则认为拟议的法规是在整个欧盟引入“大规模监视”的特洛伊木马。
,我们提出了一种通过采用拉格朗日点的外来特性来指导带电颗粒(例如电子和质子)的方法。通过围绕这些平衡点展开的动力学使这种飞跃成为可能,稳定地捕获了这种粒子,类似于木星轨道上的木马小行星的方式。与传统的方法论不同,该方法可以使带电颗粒的聚焦或三维储存,而拟议的方案可以指导小型横截面区域中的非偏见和相对论电子和质子在长期不变的情况下以长期不变的方式引导,而无需任何可观的能量损失 - 与光子传输相似于光子的光合物。在这里,通过采用扭曲的静电电势来实现粒子引导,而静态电势又在真空中引起稳定的拉格朗日点。原则上,可以在由此产生的波导的基本模式中实现指导,从而提出了在量子域中操纵这些颗粒的前景。我们的发现可能在科学和技术追求的广泛应用中很有用。这些应用可以涵盖电子显微镜和光刻,粒子加速器,量子和经典通信/传感系统,以及量子网络中节点之间的纠缠量子的方法。
摘要 迄今为止,纳米粒子 (NP) 已被广泛用于治疗癌症。它们被归类为高效的药物输送系统,因为它们具有出色的性能和设计灵活性,使其具有高度的针对性和安全性。然而,纳米粒子仍然面临着生物稳定性、非特异性、被识别为外来物质和快速清除方面的挑战,这限制了它们在临床上的应用。为了克服这些缺点,提出了先进的仿生纳米技术,使用 T 细胞膜包被的 NP 作为优越的药物输送系统,这可以增加它们的循环时间并防止免疫系统快速从体内清除。免疫 T 细胞具有特定的表面蛋白,可在膜提取和包被过程中将独特的功能转移到仿生 NP。T 细胞表面的此类蛋白质为纳米粒子提供了各种优势,包括延长循环、增加药物靶向范围、控制释放、特定的细胞相互作用和有限的体内毒性。本综述讨论了基于 T 细胞膜的仿生纳米系统、其详细的提取工艺、制造、涂覆 NP 以及这些仿生系统在癌症治疗中的适用性。此外,还介绍了其临床转化的最新应用、未来前景和当前挑战。关键词:癌症治疗、T 细胞修饰纳米粒子、T 细胞膜涂层、特洛伊木马纳米粒子