摘要:对光与物质之间强耦合的研究是研究的重要领域。它的重点不仅源于出现众多引人入胜的化学和物理现象,而且通常是新颖和意外的,而且还源于其为新颖的化学,电子,电子和光子设备设计核心组件设计的重要工具集,例如量子,量子量,量子,量子,激光,放大器,模块化器,传感器,传感器,以及更多。已经证明了各种配置系统和光谱制度的强耦合,每个耦合均具有独特的功能和应用。从这个角度来看,我们将重点关注该研究领域的一个子区域,并讨论超材料和光子频率下的强烈耦合。超材料本身就是电磁谐振器,作为“人工原子”。我们概述了最新进步的概述,并概述了这一跨学科科学的重要和有影响力的领域中可能的研究指示。
本发明涉及一种装置,通过该装置,物体通过电子束和影响电子流的静电场或电磁场(电子透镜)以放大的比例成像。根据本发明,多个电子透镜影响电子束,并一起以显微镜或望远镜的方式实现更高的放大率。如前所述,电磁电子透镜和带负电的静电电子透镜相当于光学中的会聚透镜,而带正电的静电电子透镜相当于发散透镜。因此,通过组合这些透镜,可以为电子束模拟光学中利用会聚或发散光束的任何已知装置。此外,还可以以这种方式构建直接使用或反射后使用电子束的显微镜或望远镜。通过以显微镜或望远镜的方式组合多个透镜,可以获得特别高的图像放大倍数。使用电子束具有特别大的优势,
本文首先提出,电子等物理实体和光子等宇宙实体属于宇宙的两个不同层次。当我们说空间是真空时,我们指的是物理真空,而不是宇宙真空。本文提出,我们观察到的空间是宇宙物质的结构。我们不能假设有某种东西填补了空间的空虚。本文假定宇宙物质的结构创造了这种空虚,以促进电磁波和引力等物理活动。其次,空间结构是一种空间宇宙现象,而时间是由物理实体运作的物理现象。时空连续体是由物理时间获得宇宙空间结构而产生的。本文的第三部分解释了空间结构的结构和成分。该结构本身解释了几种宇宙现象,包括电磁波、引力、光、磁力、暗物质和暗能量。通过多学科的统一来验证论文的哲学正确性,通过与著名实验结果的逻辑一致性来验证其科学正确性。
摘要 - 随着实时网格监测,干扰位置和情况意识的增加,相量测量单元(PMU)对广泛测量系统(WAMS)变得更加至关重要。但是,PMU的漏洞尚未得到很好的研究,尤其是在电磁脉冲(EMP)场景下。一旦EMP损坏了电源系统的稳定操作将直接影响它们。因此,研究其对EMP事件的免疫力是迫切且必要的。在本文中,提出了有效的阻抗测量方案和脉冲电流注入(PCI)测试,以用于端口阻抗测量和PMU的免疫水平。建立了等效的非均匀传输线模型,以消除插入过程中的影响。然后,设置了脉冲电流发生器的电路以生成阻尼正弦,并将双指数波应用于端口。最后,使用测量的阻抗作为发电机负载,在PCI测试模拟中计算了不同端口的电压和电流响应。结果揭示了端口阻抗,电压和电流波形的特征以及累积能量的分布。讨论了端口阻抗与波形之间的关系。
简要介绍一下电磁波谱 (EMS) 可以为解释 EW 系统在现代战争中的作用铺平道路。毫不奇怪,从手机到简单的电视遥控器,我们日常生活中的许多设备都使用 EMS。什么是电磁波谱 1 ?基本上,EMS 可以定义为在特定频率范围和波长内以光速传播的电磁波。下图 1 中可以看到 EMS 的频率和波长的全部范围。2 EMS 频率和波长部分的顶部属于伽马射线和 X 射线,由于其高能光子和非常小的波长(λ=10-10 厘米)的性质,它们常用于医学领域(医学成像)和核物理。在 X 射线之后,我们可以看到 EMS 的紫外线和红外光部分。这种 EMS 大部分是人眼看不见的,但只有在这个频谱的一小部分中,人类和大多数动物才能看到电磁波。红外摄像机(用于检测物体的热图像)也在 EM 频谱的这一部分工作。EMS 场的 1-300 GHz 频率(100 米-0.5 毫米波长)频谱主要用于军事应用、气象观测和导航辅助目的的各种雷达系统。EMS 范围的底部主要用于无线电通信和电视
简要介绍一下电磁波谱 (EMS),有助于解释电子战系统在现代战争中的作用。毫不奇怪,从手机到简单的电视遥控器,我们日常生活中的许多设备都使用 EMS。什么是电磁波谱 1 ?基本上,EMS 可以定义为在特定频率范围和波长下以光速传播的电磁波。EMS 的频率和波长的全部范围如下图 1 所示。2 EMS 频率和波长部分的顶部属于伽马射线和 X 射线,由于其高能光子和非常小的波长(λ=10-10 厘米)的性质,它们常用于医学领域(医学成像)和核物理。我们在 X 射线之后立即看到 EMS 的紫外线和红外光部分。这种 EMS 大部分对人眼来说是看不见的,但只有在这个频谱的一小部分中,电磁波才能被人类和大多数动物看到。红外摄像机(用于检测物体的热图像)也适用于电磁频谱的这一部分。电磁频谱的 1-300 GHz 频率(100 米-0.5 毫米波长)频谱主要由各种雷达系统使用,这些雷达系统主要用于军事应用、气象观测和导航辅助目的。电磁频谱范围的底部主要用于无线电通信和电视
超材料,源于希腊语“meta”,意为“超越”,是一种具有独特属性和能力的人造材料。其显著特征在于其结构,由重复的晶胞组成。这些材料的属性主要由晶胞的几何形状而非材料成分决定,在天然材料中并不存在。主动超材料是超材料的一个子类别,其晶胞能够响应外部触发或刺激而改变其几何形状,从而相应地改变其属性。通过操纵这些刺激,主动超材料展现出可调节属性的卓越能力,从而显著增强其功能性和适用性。在众多不同类型的主动超材料中,磁机械超材料通过应用外部磁场(一种快速、可逆且不受束缚的驱动方法)具有独特的形状重构和属性调节优势。图 1(a) 展示了磁机械超材料的一般机制。通常,磁机械超材料的晶胞部分具有专门设计的磁化方向。当受到外部磁场(通常由永磁体或电磁线圈产生)时,磁机械超材料的磁化部分会经历磁扭矩,从而导致形状转变为致动模式。该过程是可逆的,在移除磁场后,或者在某些情况下施加反向磁场后,磁机械超材料会恢复到其初始模式。此外,制造磁机械超材料有两种策略。第一种选择是将磁性粒子嵌入软聚合物材料中,形成磁性软复合材料 [2、3],第二种选择是插入永久刚性磁体
基于定期驱动的量子系统(“ Floquet Engineering”)基于浮标理论的频率高频电磁场来控制电子特性,该理论已在上一十年中彻底彻底实现TUM电路14-17,固态系统18-21和纳米效应22-28。由于无法通过电子吸收效率,因此只能穿衣服,修改所有电子特性。这样的调味料既导致电子中现有术语的重新归一化,也导致了新术语的出现(例如自旋轨道耦合29),这大大改变了带结构和电子传输。,电磁敷料会导致电子相互作用的实质性修改,从而诱导以排斥电位30结合的电子状态,将电子配对的电子配对,其中包含带有不同ef-ef-ef-ef-eff- eff-fifecte的电荷载体和新的相互作用(例如,与新的相互作用)(例如,相互群体和新密度),并构成了whos的范围 - 非羟基分散剂(例如,在最简单的一维单频枢轴模型中)33。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到:
光子霍尔效应 (PHE) 早在 20 多年前就被预测 [1] 并被测量 [2]。它指的是沿垂直于入射电流和磁场的优先方向散射的电磁通量,这与电子传导中的 (异常) 霍尔效应非常相似。研究表明,PHE 源自介电米氏球单次散射中的法拉第旋转 [3],并在纯电偶极耦合区域(瑞利区域)中消失。因此,PHE 不会发生在原子的单次光散射中,而是由多次散射 [4] 或电偶极跃迁与更高的多极子发生干涉时产生的 [5]。在最近的文献中,人们发现了许多或多或少相关的效应,例如光子自旋霍尔效应 [6–8]、光的量子自旋霍尔效应 [9]、声子霍尔效应 [10]、等离子体霍尔效应 [11] 甚至其他光子霍尔效应 [12]。在具有中心光源的散射介质中,沿 z 轴施加均匀磁场 B 0 时,PHE 表现为绕场线旋转的电流。与 PHE 相关的坡印廷矢量由 S PHE = DH b B 0 × ∇ ρ ( r , t ) 给出,其中 ρ ( r , t ) 为电磁能量密度,DH ( B 0 ) 为霍尔扩散常数,其符号由法拉第旋转方向决定。最简单的情况是考虑一个点源 P ( r , t ) = P ( t ) δ ( r ),将功率 P 注入扩散常数为 D 的无限扩散介质中。对于单次能量为 W 的辐射,P ( t ) = Wδ ( t ),我们可以代入扩散方程的著名解,得到: