• 参与了 Paddle Quantum 和 QAPP 的开发,这两个 Python 包允许用户通过云服务在模拟器和真实量子设备上设计、测试和运行近期量子算法,如变分量子特征求解器。
1) 慕尼黑工业大学生物资源化学系,生物技术与可持续发展校区,Schulgasse 16, 94315,施特劳宾,德国 2) 伦斯勒理工学院生物技术与跨学科研究中心,特洛伊,纽约 12180,美国 3) 伦斯勒理工学院化学与生物工程系,特洛伊,纽约 12180,美国 4) 弗劳恩霍夫 IGB,施特劳宾分会 BioCat,Schulgasse 23, 94315,施特劳宾,德国 5) TUM 催化研究中心,Ernst-Otto-Fischer-Straße1, 85748,加兴,德国 6) 昆士兰大学化学与分子生物科学学院,68 Copper Road,圣卢西亚,4072,澳大利亚 7) 分子微生物学与生物研究所德国明斯特大学生物技术系,Corrensstrasse 3, 48149 Münster,
利用了德勤的《 Nevery of Health™Vision》的洞察力,预计从“医疗保健”转变为“健康”,我们探讨了在德勤技术趋势2024年报告中如何强调的新兴技术如何帮助促进这一过渡。从工业元元中的空间计算到AI驱动的健康管理系统,这些趋势代表了卫生保健组织的关键机会,以提高患者护理,提高运营效率,简化付款,自动化索赔并导航现代医疗保健生态系统的复杂性。随着我们2024年的发展,卫生保健技术的景观继续随着快速Momen Tum的发展而发展,从根本上改变了医疗服务的提供和经验。这种转变不仅塑造了医疗保健提供,而且还塑造了健康计划管理和患者参与背后的机制。
1 GFZ German Research Centre for Geosciences, Section Geomicrobiology, Potsdam, Germany, 2 Soil Science, TUM School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany, 3 Department of Geosciences, Soil Science and Geomorphology, University of Tübingen, Tübingen, Germany, 4 Centro Regional de Investigación y Desarrollo Sustentable de Atacama(Cridesat),De Atacama大学,Copiapó大学,智利,5 5研究所,Potsdam,Potsdam,Potsdam,Potsdam,6 GFZ德国地球科学研究中心,GFZ 6 GFZ 6 GFZ GEMorphology,Dermany,Potsdam,Potsdam 6 GFZ 6自然资源管理,哥本哈根大学,哥本哈根,丹麦,丹麦9学院,智利大学,智利大学,圣地亚哥大学,智利,智利10学院,波茨坦大学,波斯坦大学,波斯坦大学,德国,德国,
1. 欧洲核物理和相关领域理论研究中心 (ECT*),意大利 2. 于利希研究中心 (FZJ),德国 3. 原子能和替代能源委员会 (CEA),法国 4. 意大利摩德纳帕多瓦大学和 CNR 纳米科学研究所 5. 西班牙巴塞罗那超级计算中心 (BSC) 6. 芬兰 CSC – 科学信息技术中心 7. 爱尔兰高端计算中心 (ICHEC),爱尔兰 8. 耶路撒冷希伯来大学,以色列 9. 法国国家科学研究中心 (CNRS) 10. 意大利北部大学间自动计算联盟 (CINECA),意大利 11. 葡萄牙里斯本大学 12. 德国莱布尼茨超级计算中心 (LRZ) 13. 德国慕尼黑工业大学 (TUM) 14.西班牙光子学科学学院 (ICFO) * 编辑作者
关于该研究所的药理学和毒理学研究所是慕尼黑技术大学医学院(TUM)的一部分,慕尼黑技术大学是德国领先的大学之一(获得了三个卓越群体之一)。我们研究的重点是非编码RNA的作用机理及其在心脏病中的治疗适用性。我们的团队在体外和体内1,2的心脏促进神经节中的特定细胞方面表现出色。我们在非编码RNA领域中拥有长期的专业知识,该领域由许多备受瞩目的出版物3-5记录。在“心血管系统中的非编码RNA”上新建立的SFB(Sonderforschungsbereich)旨在阐明非编码RNA的功能和行动机理。要进一步分析非编码RNA的分析,我们正在寻找两个有动力的博士生加入我们的小组。
开发数值方法以在通用量子计算机上有效模拟非线性流体动力学是一项具有挑战性的问题。在本文中,定义了 Madelung 变换的广义以通过狄拉克方程求解与外部电磁力相互作用的量子相对论带电流体方程。狄拉克方程被离散化为离散时间量子游动 (DTQW),可在通用量子计算机上有效实现。提出了该算法的一种变体,以在均匀外力的情况下使用当前的噪声中间尺度量子 (NISQ) 设备实现模拟。使用该算法在当前 IBM NISQ 上执行相对论和非相对论流体动力学冲击的高分辨率(高达 N = 2 17 个网格点)数值模拟。这项工作表明可以在 NISQ 上模拟流体动力学,并为使用更一般的量子游动和量子自动机模拟其他流体(包括等离子体)打开了大门。
使用量子算法模拟量子物质中的复杂物理过程和相关性一直是量子计算研究的主要方向,有望实现优于传统方法的量子优势。在这项工作中,我们开发了一种广义量子算法来模拟由算子和表示或林德布拉德主方程表示的任何动态过程。然后,我们通过在 IBM QASM 量子模拟器上模拟 Fenna-Matthews-Olson (FMO) 复合体的动态来演示量子算法。这项工作首次演示了一种用于开放量子动力学的量子算法,该动力学过程涉及现实生物结构,具有中等复杂的动态过程。出于同一目的,我们讨论了量子算法相对于经典方法的复杂性,并基于量子测量的独特性质展示了量子方法的决定性查询复杂性优势。
对振动分子光谱的准确模拟在常规计算机上很昂贵。与电子结构问题相比,量子计算机的振动结构问题的研究较少。在这项工作中,我们准确地估算了量子量的量子,例如逻辑柜和量子门的数量,这些量子是在实体量子计算机上计算的振动结构所需的。我们的AP-PRACH基于量子相估计,并专注于耐断层的量子设备。除了通用化学化合物的渐近阶段外,我们还对模拟在振动结构计算中所需的量子资源进行了更详细的分析。杠杆嵌套的换向器,与先前的研究相比,我们对猪肉误差进行了深入的定量分析。最终,这项工作是分析振动结构模拟中潜在的量子优势的指南。
随着现代经典技术中集成电路 (IC) 越来越小,量子力学的作用越来越突出,因此量子技术 (基于量子力学和量子信息论的技术 [1]) 变得越来越重要。利用量子技术构建的代表是量子计算机 [2],最近利用超导量子比特已经实现。在量子信息处理中,量子纠缠 [1,3,4] 作为一种物理资源发挥着重要作用,被用于各种量子信息处理,如量子隐形传态 [5,6]、超密集编码 [7]、量子克隆 [8]、量子密码学 [9,10]、量子计量学 [11] 和量子计算机 [2,12,13]。几年前,人们开始探索纠缠辅助目标检测协议(称为量子照明 [ 14 , 15 ])及其实验实现 [ 16 – 20 ]。量子照明是一种利用量子纠缠的协议