核聚变是一种众所周知的能源,它有可能为人类的未来提供可持续、环保、可调度的高功率密度能源供应解决方案。目前,利用核聚变能最有前途的方法是基于专门设计的环形装置内的磁约束高温等离子体 [1]。对热核磁约束聚变的持续研究推动了当前示范聚变反应堆 (DEMO) 的设计活动,该反应堆预计将作为所谓的托卡马克型反应堆实现 [2]。实现 DEMO 反应堆的一个主要挑战是设计和制造高负荷等离子体面对部件 (PFC),这些部件必须在聚变运行期间承受强烈的粒子、热量和中子通量 [3]。对于此类 PFC,需要特定的高性能材料才能设计出可靠的部件。对于直接面对聚变等离子体的材料,钨 (W) 目前被认为是未来磁约束热核聚变反应堆的首选等离子体面对材料 (PFM)。这主要是因为 W 表现出较高的溅射阈值能量,以及作为聚变反应燃料的氢同位素的低保留率 [4]。对于 DEMO 反应堆中的 PFC,一个特别关键的方面是瞬态壁面负载,例如,由于托卡马克中的等离子体不稳定性而产生的瞬态壁面负载。此类瞬态事件可能导致 PFC 上出现非常强烈的热负载(数十 GW/m 2,持续时间为几毫秒),进而严重损坏反应堆的包层结构 [5]。为了保护聚变反应堆的壁免受此类事件的影响,目前正在研究特定的限制器 PFC。这些组件预计将阻挡到达反应堆壁的短暂而强烈的热脉冲,以使这些限制器组件后面的包层结构不会热过载或损坏。这种限制性 PFC 的一种可能的材料解决方案是使用定制的多孔 W 材料。利用这种超材料,可以实现将由于结合了多孔性而具有的总体低热导率与 W 的有益等离子体壁相互作用特性相结合的组件。然而,W 是一种难以加工的材料,因为它本质上是一种硬而脆的金属,这意味着加工 W 既费力又昂贵。针对这些限制,增材制造 (AM) 方法代表了一种实现几何复杂的 W 部件的通用方法。AM 工艺的特点是,在计算机控制下通过逐层沉积材料来创建三维物体,这意味着使用这种方法可以直接实现具有高几何复杂性的部件。近年来,利用激光粉末床熔合 (LPBF) 技术对金属进行 AM 加工已取得重大进展,该技术无需粘合剂相即可对多种金属进行直接 AM 加工。在 LPBF 加工过程中,原料粉末材料通过聚焦在粉末床上的激光束选择性地熔化和固结 [6]。封面图片展示了通过 LPBF 制造的具有定制晶格结构的 W 样品的顶视图。目前正在针对如上所述的限制器 PFC 研究此类多孔 W 晶格。图示样品是一种晶格结构,它源自基于十四面体重复(开尔文模型)的参数固体模型。这种模型过去也应用于开孔铝泡沫 [7] 并得到验证。图示 W 晶格的参数
在扭曲的双层系统中观察到的多样化和有趣的现象,例如石墨烯和过渡金属二核苷,引发了有关它们可能托管的新兴效应的新问题。然而,在足够大以进行光谱研究的规模上实现这些结构的实际挑战仍然是一个巨大的障碍,导致直接测量扭曲过渡金属二甲基化元素双层的电子带结构的直接测量很少。在这里,我们提出了一个系统的纳米级角度分辨光发射光谱调查,对散装,单层和扭曲的双层WS 2的光发射调查,小扭曲角为4.4°。实验结果与基于高对称方向的密度函数理论的理论计算进行了比较。出乎意料的是,电子带结构的测量表明,结构弛豫以4.4°扭曲角出现,并形成了大型,不WIST的双层区域。
printix还提供以下好处:•几分钟后创建了一个新的Printix Home(租户)。•通过Microsoft Entra ID,Google Workspace,Okta,Onelogin等通过用户身份验证。•支持多个Microsoft Entra目录以及多个Google,Okta和Onelogin域。•带有用户的Microsoft帐户的单登录(SSO)。•Microsoft Endpoint Manager可用于将Printix客户端软件部署到用户'
最常见的钨andα-W同质量在约11 mk的温度下具有超导过渡。然而,据报道,当合成为薄膜时,温度范围内具有超导的过渡,在温度范围内t c〜2-5 k:晶体β-W和无定形W(A -W)。在这项工作中,我们对使用DC磁控溅射,运输,低频磁屏蔽响应和透射电子显微镜进行了系统研究。我们的结果表明,虽然A -W确实是常规的超导体,但β-W并不是一个超过2.3 K的超导体。在推定的β -W fif中,具有T c> 3 k的超导能力可能起源于在β-W相下形成的无定形相。我们的发现调和了β -W中报道的一些异常,例如非常小的超导间隙和随着纤维厚度的增加而减少T c。
位于佛罗里达州迈阿密的美国焊接学会 (AWS) 最近与贸易展和会议制作公司 Trade Show Consulting (TSC) 达成协议,收购拉丁美洲最大的焊接贸易展 Weldmex。AWS 将保留 Weldmex 的主要所有权,并以新名称 AWS Weldmex 承担组织、推广、制作和管理 Weldmex 的权利。TSC 将继续为展会的制作、营销和管理提供支持服务。“我们非常高兴加入墨西哥首屈一指的焊接活动,并将 AWS 进一步拓展到拉丁美洲市场,”AWS 执行董事 Ray Shook 说道。“墨西哥的焊接和制造行业经历了令人瞩目的增长,该国仍然是北美的重要贸易伙伴。我们相信 AWS Weldmex 将扩大 AWS 的覆盖范围,并为我们的 50,000 多名会员提供令人兴奋的额外福利和机会。”今年,AWS Weldmex 计划于 1 月 29 日至 31 日在墨西哥城新的 Centro Banamex 举行。
基于WSE 2膜的抽象二维层次过渡金属二分元化元素具有有希望的纳米电子和光伏应用的特性。在这项工作中,WSE 2膜是通过硒化的DC启用W前体制备的。研究了WSE 2膜的结构,形态和光学特性的影响。在50°C的间隔下,硒化温度从350°C到450°C变化。使用X-Ray衍射法(XRD),原子力显微镜(AFM)和UV-VIS-NIR分光光度计研究了WSE 2的结构,形态和光学特性。XRD分析表明,所有WSE 2均为多晶,并且表现出C轴垂直和平行底物纹理的共存。在400°C下硒的样品表现出强(00𝑙)的类型 - 晶体方向的类型 - 垂直C-轴轴底物纹理 - 主导的晶体生长。AFM图像进一步揭示了在350°C和450°C下硒的样品的平行和垂直晶体方向的存在。光学测量表明,所有WSE 2样品都是透明的,由在约620 nm的波长处的激子峰组成。估计的带隙值在1.22 eV至1.37 eV的范围内,这比预期的要低一些 - W 5 O 14阶段的存在被认为是主要原因。关键字:过渡金属果酱,二维层次WSE 2膜,晶体
位于佛罗里达州迈阿密的美国焊接学会 (AWS) 最近与贸易展和会议制作公司 Trade Show Consulting (TSC) 达成协议,收购拉丁美洲最大的焊接贸易展 Weldmex。AWS 将保留 Weldmex 的主要所有权,并以新名称 AWS Weldmex 承担组织、推广、制作和管理 Weldmex 的权利。TSC 将继续为展会的制作、营销和管理提供支持服务。“我们非常高兴加入墨西哥首屈一指的焊接活动,并将 AWS 进一步拓展到拉丁美洲市场,”AWS 执行董事 Ray Shook 说道。“墨西哥的焊接和制造行业经历了令人瞩目的增长,该国仍然是北美的重要贸易伙伴。我们相信 AWS Weldmex 将扩大 AWS 的覆盖范围,并为我们的 50,000 多名会员提供令人兴奋的额外福利和机会。”今年,AWS Weldmex 计划于 1 月 29 日至 31 日在墨西哥城新的 Centro Banamex 举行。
“我们通过昆士兰州关键矿产和电池技术基金的投资为EQ资源提供了一条途径,可以通过进一步探索可通过地下采矿访问的钨资源来扩展现有矿山。新的工厂设备,钻探测试和试验采矿将预计将其产能并将矿山的寿命延长至少五年,从而确保全球对钨的需求继续为遥远的北昆士兰州人提供当地的机会。”资源和关键矿产部长斯科特·斯图尔特(Scott Stewart)评论说:“钨产量的复兴是昆士兰州关键矿物繁荣的另一个非凡的成功故事。自2019年重返运营以来,卡宾枪钨矿已成为遥远北部的主要雇主,那里有175名工人和承包商有望每年生产约3,000吨钨浓缩液。预计现有的开放式矿山将在2029年到达生命的尽头,但迈尔斯政府致力于支持这些工人和他们称之为家的社区。”
摘要:钨 (W) 和钨合金被视为面向等离子体的部件 (PFC) 的主要候选材料,这些部件必须在温度、中子通量、等离子体效应和辐照轰击等恶劣环境下工作。由于这些技术固有的问题,这些材料很难使用增材制造 (AM) 方法生产。本文回顾了将 AM 技术应用于 W 基 PFC 应用的进展,并讨论了所选制造方法中的技术问题。具体而言,我们重点关注激光粉末床熔合 (LPBF)、电子束熔化 (EBM) 和直接能量沉积 (DED) 在 W 材料中的最新发展和应用,因为它们能够保留 W 作为潜在 PFC 的特性。此外,我们还调查了有关辐照对 W 和 W 合金的影响的现有文献,并讨论了其中这些问题的可能解决方案。最后,本文确定并概述了未来增材制造 W 研究中可能存在的差距。
年份 硬质合金的发展 1890-1900 WC 和 W 2 C 1910-1920 铸造 WC-W 2 C 1920-1925 WC-Co 1930 WC-Mo 2 C-TiC-Co/Ni WC-TaC-Co、WC-TiC-Co 1935-1950 WC-TiC-TaC-Co、WC-Cr 3 C 2 -Co 标准等级 WC-Ni/Cr 的发展 1960-1965 WC-TiC-(Ta,Nb)C- Cr 3 C 2 -Co WC-TiC(TaC)-HfC-Co 1970-1989 微晶粒 WC-Fe(Co, Ni)、铸造 (W, Ti)C 1980-1990 (W, Mo)C-Co、WC-Fe/Co/Ni