二十一世纪资本主义的一个定义特征是平台工作的快速增长,该工作使公司可以使用数字技术(网站或应用程序)来调解服务提供商和客户之间的经济交易。虽然平台尚未占劳动力的一小部分 - 估计通常位于低单位(Collins等人)中(Collins等人2019) - 许多学者坚信,在未来几年中,平台劳动力的排名将大幅增长(Sundararajan 2016),对工作和就业的性质产生潜在的深远影响,甚至可以重新配置“工作”。注意这些赌注,学术研究人员已经对平台工作进行了大量研究(Calo and Rosenblat 2017; Ravenelle 2019; Schor等人。2020b;伍德等。2019)。然而,这项研究几乎没有关于许多重要问题的清晰度或共识。“算法管理”如何重塑行使对劳动的权力和权威?常规经济中的公司将如何受到平台工作兴起的影响?鉴于平台公司所表明的破坏性权力,监管政策和福利国家规定需要进行哪些调整?诸如UPWORK和机械土耳其人之类的人群工作网站的可用性会鼓励公司外包其人员配备系统吗?或平台会促进更具包容性的经济,使边缘化地区的工人或残疾人的工人能够获得更大的收入赚钱机会?在本章中,我们几乎无法打算解决这些问题。最后,在平台工人的权利上,法律和政治斗争如何发展?哪些群体将成功地塑造定义平台在未来几年中工作的叙述?我们的目标更加谦虚,旨在概述文献中的主要争论,以确定我们知识中的主要差距,并提出了一些未来研究的最重要领域,因为国家与当代资本主义景观之间的结构性动荡斗争。本章首先要勾勒出近年来开放的三个主要分析线:首先是一个充满希望的观点,其中平台有助于扩大范围
当美国能源部(DOE)在2019年选出全国水创新联盟(NAWI)以领导一项为期五年,1.1亿美元的投资,以提高淡化成本和能源效率,大多数人认为我们的研究计划将重点放在海洋淡化。,但纳维社区认识到,最大的收益将来自将海水淡化作为更大的水再利用工具箱中的重要工具。我们没有像从海洋中产生高质量淡水的大型沿海设施那样考虑“脱盐”,而是看到了使用和改进淡渗透技术(如反渗透技术)来治疗和重复使用一系列更多样化的“非传统”水源的潜力。这些“非传统”水源在地理上是广泛的,在构图上多样化,可用于无数应用。此外,为什么不考虑小规模,模块化的,模块化的水处理和重新使用系统以在本地使用和重复使用水的小规模,模块化,分散的水处理系统,而不是建造大规模内陆水资源供水厂(其成本可能与沿海脱盐植物的成本相媲美)?在过去的五年中,纳维(Nawi)推出了50多个协作应用研究和技术开发项目,以实现自动驾驶,适合使用的治疗和重复使用系统,其中包括将于2025年运行的十二名飞行员。可以在此处找到这些项目中的每个项目的描述。在NAWI计划的接下来的五年(NAWI 2.0)中,我们将重点关注1.0计划的许多相同主题,同时扩大我们的技术准备工作。2024年4月11日,在华盛顿特区的现场水资源峰会上,能源副部长戴维·特克(David Turk)宣布,纳威计划将续签五年,并从DOE中额外投资7500万美元。在2025年,我们将发布一系列资金机会公告,以寻求团队以演示操作环境中的下一代水处理试点系统。nawi对以后的专注于工业冷却水,咸水地下水,直接饮用的再利用和前提重新使用等主题的研究感兴趣。您可以通过在nawihub.org上加入免费的nawi联盟来找到更多信息,以与正在努力使21世纪水系统更具弹性的创新者社区建立联系;或跟随我们的新包装动作。,我很高兴看到联邦水资源领导的领导,不仅来自纳威,而且来自联邦水资源互利工作组以及EPA关于国家水资源供水行动计划的领导才能 - 他们的协作工作正在对水部门产生持久的影响。
FY24 补给部队 (SC) 无限期召回机会 无限期召回申请应在 2024 年 6 月 30 日之前通过 DOD SAFE 或加密电子邮件提交至 BUPERS-31_SUPPLY.fct@navy.mil。申请:如果您对无限期召回 3100 感兴趣,请查看 MPM 1321-105 中列出的要求。所需的申请和表格可从 MyNavyHR 网站 (https://www.mynavyhr.navy.mil/References/Forms/NAVPERS/) 获取。以下是申请所需项目的摘要:1)MPN 召回申请,附有 CO 的认可 2)个人陈述 3)NAVPERS 表格 1331/5 4)BUPERS 在线(BOL)的年度服务历史声明(ASOSH) 5)累积现役服务声明(附件(1)来自 SECNAVINST 1800.2A) 6)BUPERS 在线(BOL)的官员总结记录(OSR)的 PDF 7)BUPERS 在线(BOL)的绩效总结记录(PSR)的 PDF 8)最近(4)份体能报告(正面和背面) 9)PSR 中未记录的相关资格/培训(可选) 10)过去三年的 PFA 结果摘要(来自 PRIMS) 11)简历(军人或平民) 12)推荐信(可选) 13)BUPERS 在线(BOL)的个人医疗准备状态(IMR) 14) 大学成绩单 上述申请要求包括提交个人陈述、OSR 和 PSR 的 PDF、过去三年的 PFA 成绩摘要、大学成绩单以及 BOL 的 IMR 的额外指导。这与 MPN 召回申请模板不同。请将这些附件作为单个扫描文档提交以方便审核。额外指导:1)申请截止日期为 2024 年 6 月 30 日。2)记录审查将根据 SECNAV 批准的社区价值观和职业发展图表进行比较。3)根据第十条,因多次未被选中晋升任何等级而脱离现役的现役军官(也称为多次选拔失败 (FOS))没有资格。多次未被选中晋升任何等级的预备役军官将根据具体情况考虑。 4) 个人医疗准备 (IMR) 状态非“完全医疗准备”的军官,若未提供医疗机构出具的额外文件,表明病情将在 2024 年 10 月 1 日前痊愈,则不符合申请资格。INDEF 召回 POC:鼓励潜在申请人联系其预备役 OCM,以确定其释放是否会受到任何限制的影响。SELRES 申请人可以联系 LCDR Danica Johnson,邮箱地址为 danica.r.johnson.mil@us.navy.mil。TAR 申请人还可以联系 CDR Mark “Turk” MacNamara,邮箱地址为 mark.b.macnamara.mil@us.navy.mil 和 CDR Kirk Morris,邮箱地址为 kirk.n.morris.mil@us.navy.mil。
A3:A4A;A5;AG(2 个副本);Bl(仅限 SECDEF—2 个副本);B2(仅限 JCS、DASA);B3;B5(仅限 USCG HQ);C3(仅限第 8 联合特遣部队—2 个副本);C5A(仅限韩国);C5B(仅限希腊);C7(仅限巴西、加拿大、智利、委内瑞拉);E3A(仅限华盛顿特区);FF1;FF3(2 个副本);FF4;FAS;FA6;FA7(减去阿根廷、百慕大、梅波特、费城、罗斯福路);FA10(2 个副本);FA18;FA23(仅限楠塔基特岛、哈特拉斯角、安提瓜、巴巴多斯岛、圣萨尔瓦多、伊柳塞拉、大特克岛);FA25;FB4;FB6;FB7(减去阿拉米达、勒莫尔); FB7 (仅阿拉米达—3 份); FB7 (仅勒莫尔—2 份); FB8; FB10 (各 2 份); FB13 (2 份); FB17; FB21; FB29 (仅关岛); FB30 (仅瓜拉—2 份); FB34; FC4; FD2; FF2; FGi; FG2 (减去波多黎各); FG2 (仅波多黎各— 3 份); FH3 (仅切尔西、费城、波兹莫特 (弗吉尼亚)、博福特、圣地亚哥、奥克兰、圣奥尔本斯、贝塞斯达); FJ1 (仅圣地亚哥); FJ3 (100 份); FJ10 (2 份); FJ12 (3 份); FJ14 (仅班布里奇、大湖区、圣地亚哥); FJ23; FJ27 (2 份); FJ28; FJ35; FJ36; FJ38B(仅限 Miners、Princeton、Rensselaer);FJ47(仅限 Schenectady、Idaho Falls);FJ52;FJ73;FKA1A;FKA1B(5 份);FKAID(5 份);FKAIE(2 份);FKAI1F(5 份);FKA6A2;FKA6A3A(2 份);FKAGA3B;FKAGA4(4 份);FKAGA8;FKAGA9;FKAGB1;FKA7;FKL1(各 2 份)FKL2(Bay City、Groton、San Francisco Bay 除外);FKM8;FKM9(各 2 份);FKM10(2 份);FKNI1(各 50 份);FKN2(各 2 份);FKN3(仅限关岛、西班牙、西南太平洋);FK
1. Jack CR, Jr.、Knopman DS、Jagust WJ 等人。阿尔茨海默病病理级联动态生物标志物的假设模型。Lancet Neurol。2010;9:119-128。2. Langbaum JB、Fleisher AS、Chen K 等人。开启临床前阿尔茨海默病的研究和治疗。Nat Rev Neurol。2013;9(7):371-381。3. Sperling RA、Aisen PS、Beckett LA 等人。定义阿尔茨海默病的临床前阶段:美国国家老龄研究所-阿尔茨海默病协会工作组关于阿尔茨海默病诊断指南的建议。Alzheimers Dement。 2011;7:280-292。4. Insel PS、Weiner M、Mackin RS 等人。确定临床前阿尔茨海默病中具有临床意义的衰退。神经病学。2019;93:322-333。5. Buckley RF、Mormino EC、Amariglio RE 等人。性别、淀粉样蛋白、APOE ε 4 与临床前阿尔茨海默病中的认知衰退风险:来自三个特征明确的队列的发现。阿尔茨海默病痴呆症。2018;14:1193-1203。6. Ellis KA、Bush AI、Darby D 等人。澳大利亚衰老成像、生物标志物和生活方式 (AIBL) 研究:阿尔茨海默病纵向研究中招募的 1112 名个体的方法和基线特征。 Int Psychogeriatr。2009;21:672-687。7. Petersen RC、Aisen PS、Beckett LA 等人。阿尔茨海默病神经影像学计划(ADNI):临床特征。神经病学。2010;74:201-209。8. Bauer RM、Iverson GL、Cernich AN、Binder LM、Ruff RM、Naugle RI。计算机化神经心理学评估设备:美国临床神经心理学学会和美国国家神经心理学学会联合立场文件。临床神经心理学史。2012;27:362-373。9. Feenstra HEM、Vermeulen IE、Murre JMJ、Schagen SB。在线认知:促进可靠的在线神经心理学测试结果的因素。临床神经心理学。 2017;31:59-84。10. Rolbillard JM、Illes J、Arcand M 等人。阿尔茨海默病英语在线测试的科学性和伦理性特征。阿尔茨海默病。2015;1:281-288。11. Weiner MW、Nosheny R、Camacho M 等人。脑健康登记处:一个基于互联网的平台,用于招募、评估和纵向监测神经科学研究参与者。阿尔茨海默病。2018;14(8):1063-1076。12. Feenstra HEM、Vermeulen IE、Murre JMJ、Schagen SB。在线认知:促进可靠的在线神经心理学测试结果的因素。临床神经心理学。2016;31:59-84。 13. Crump MJ、McDonnell JV、Gureckis TM。评估亚马逊的 Mechanical Turk 作为实验行为研究工具的作用。PLoS One。2013;8(3):e57410。
细菌免疫。Science。337 : 816-821, 2012。6)Gaj T, Gersbach CA, Barbas CF.: 基于ZFN、TALEN 和CRISPR/Cas 的基因组工程方法。Trends. Biotechnol. 31 : 397-405, 2013。7)Doudna JA, Charpentier E.: 基因组编辑。利用CRISPR-Cas9 进行基因组工程的新前沿。Science。346 : 1258096, 2014。8)Strecker J, Ladha A, Gardner Z 等:利用CRISPR 相关转座酶进行RNA 引导的DNA 插入。Science。 365 :48-53,2019。9)Klompe SE,Vo PLH,Halpin-Healy TS 等:转座子编码的 CRISPR-Cas 系统直接介导 RNA 引导的 DNA 整合。Nature。571 :219-225,2019。10)Jacobi AM,Rettig GR,Turk R 等:用于高效基因组编辑的简化 CRISPR 工具及其向哺乳动物细胞和小鼠受精卵中的精简协议。方法。121-122 :16-28,2017。11)Lino CA,Harper JC,Carney JP 等:CRISPR 的递送:挑战和方法综述。药物递送。 12)Kaneko T.:用于产生和维持有价值动物品系的生殖技术。J. Reprod. Dev. 64:209-215,2018。 13)Mizuno N,Mizutani E,Sato H等:通过腺相关病毒载体通过CRISPR/Cas9介导的基因组编辑实现胚胎内基因盒敲入。iScience。9:286-297,2018。 14)Yoon Y,Wang D,Tai PWL等:利用重组腺相关病毒在小鼠胚胎中精简体外和体内基因组编辑。Nat. Commun. 9 : 412, 2018。15)Takahashi G, Gurumurthy CB, Wada K, 等:GONAD:通过输卵管核酸递送系统进行基因组编辑:一种新型的小鼠微注射独立基因组工程方法。Sci. Rep. 5 : 11406, 2015。16)Sato M, Ohtsuka M, Nakamura S.:输卵管内滴注溶液作为在体内操纵植入前哺乳动物胚胎的有效途径。New Insights into Theriogenology, InTechOpen, London, 2018, pp 135-150。 17)Sato M,Takabayashi S,Akasaka E 等:基因组编辑试剂在小鼠生殖细胞、胚胎和胎儿体内靶向递送的最新进展和未来展望。Cells。9:799,2020。18)Alapati D,Zacharias WJ,Hartman HA 等:宫内基因编辑治疗单基因肺疾病。Sci. Transl. Med。11:eaav8375,2019。19)Nakamura S,Ishihara M,Ando N 等:基因组编辑成分经胎盘递送导致中期妊娠小鼠胎儿胚胎心肌细胞突变。IUBMB life。 20)Sato T, Sakuma T, Yokonishi T 等:利用 TALEN 和双切口 CRISPR/Cas9 在小鼠精原干细胞系中进行基因组编辑。Stem Cell Reports。5:75-82,2015。21)Wu Y, Zhou H, Fan X 等:通过 CRISPR-Cas9 介导的基因编辑纠正小鼠精原干细胞中的一种遗传疾病
D Rani Prameela 和 P Veena 摘要 牛乳头状瘤病是由乳头状瘤病毒引起的。36 例牛乳头状瘤病病例被送往蒂鲁帕蒂 SVVU CVSc 外科和放射科诊所。根据对疣病变的临床观察,诊断为牛乳头状瘤。疣样本以无菌方式收集并处理以进行分子诊断。所有三十六份疣样本在无菌条件下用组织溶解仪进行均质化。所有三十六份疣样本在无菌条件下用组织溶解仪进行均质化。从组织匀浆中提取 DNA 并用针对 L1 基因的 PCR 进行分子诊断。在 36 个样本中,五 (5) 个对 BPV 类型 1 呈阳性,八个对 BPV 类型 -2 呈阳性,十一个对 BPV-1 和 BPV-2 同时呈阳性,其余十二个样本对 BPV 类型 5 呈阳性(使用物种特异性引物)。后来作为一种治疗措施,制备了自体疫苗。从所有患病动物身上无菌收集疣样本,并用氢氧化铝佐剂。无菌检查后,在第 0 天给患病动物皮下注射疫苗,母牛 10ml,小母牛 5ml,然后每隔 10 天注射 5 剂。疣在接种疫苗后三周开始消退,第六周完全消退。该研究表明牛乳头瘤病毒 5 型的分子诊断存在,并且使用牛特异性自体疫苗成功治疗牛乳头瘤。关键词:乳头状瘤病、疣病变、分子诊断、自体疫苗消退简介乳头瘤病毒是一群多样化的小型、无包膜、环状双链 DNA 病毒,可感染各种动物物种和人类。(Antonsson 和 Hansson,2002 年)[1]。该病毒通常感染上皮细胞,引起良性过度增殖性病变(疣、乳头状瘤和纤维乳头状瘤),这些病变可进展为癌症(Campo,2006)[9]。目前,描述了 15 种 BPV 类型(BPV -1 至 15)(Munday 等人,2015)并分为四个属。 Delta 乳头瘤病毒(BPV1、2、13 和 14)、ε 乳头瘤病毒(BPV-5&8)、Xiapapilloma 病毒(BPV-3、4、6、9、10、11、12 和 15)和 Dyoxipapilloma 病毒(BPV-7)(Melo 等人,2014 年;Grindattoo 等人,2015 年;Munday 等人,2015 年)。 2015;席尔瓦等人。德尔塔和埃普西隆乳头瘤病毒与乳头瘤和纤维乳头瘤有关,而剑突状乳头瘤病毒仅与鳞状乳头瘤有关 (Tan et al . 2012b; Araldi, 2015 and Aradi et al . 2015b) [2] 。感染可导致畜牧业因乳腺炎、牛奶和肉类产量下降以及皮革质量下降而造成重大经济损失 (Camp 2002 & 2006; Jeilnek & Tachezy 2005) [9, 14] 。感染的诊断基于临床症状、肿瘤生长的组织病理学检查、免疫组织化学和电子显微镜的使用(Turk 等人,2005 年)[33]。由于病毒入侵会导致无症状和潜伏性感染。传统的组织病理学方法、免疫组织化学既费力又费时。聚合酶链反应 (PCR) 仍然是早期诊断的重要工具。特别是在潜伏感染的无症状携带者中,无论是在上皮组织还是非上皮组织和体液中,如血液、乳汁、初乳、尿液、精液、子宫分泌物、卵巢、卵囊和胎盘等(Lindsey CJ 等人,2009 年)[19]。此外,目前没有有效的体外培养系统来培养病毒,也不可能通过血清学对流行的病毒类型进行生物分型。因此,本研究揭示了牛乳头状瘤的分子诊断和在牛中使用自源疫苗是一种成功的管理方法。
2020 年,全球能源行业受到封锁的影响,能源消费下降了 4%,但刺激计划和疫苗接种使 2021 年经济活动大幅复苏。这为能源需求复苏 4.6% 铺平了道路,高于疫情前的水平(IEA,《2021 年全球能源评论》,2021 年 4 月)。与欧洲其他国家相比,土耳其的电力消费在 2020 年没有下降,反而略有增加。此外,2021 年,土耳其的电力消费激增了 8% 以上,这主要是受经济活动增加的推动(IEA,《电力市场报告》,2022 年 1 月)。为了能够以可持续和可承受的方式满足不断增长的需求,由于投资增加,2021 年装机容量达到 99.8 吉瓦,其中 53.7% 来自可再生能源。此外,过去两年新增装机容量的 98.4% 来自可再生能源。去年,太阳能+风能新增装机容量达到近 3 吉瓦,超过了每年投入 1 吉瓦太阳能和 1 吉瓦风能的目标(TEİAŞ,《月度装机报告》,2022 年)。土耳其目前在欧洲可再生能源装机容量排名第五(IRENA,《可再生能源统计数据》,2021 年 8 月)。由于土耳其的电力需求预计在未来一段时间内会增加,核能将在以脱碳方式满足不断增长的需求方面发挥重要作用。该国第一座核电站的第一台机组预计将于 2023 年启动,容量为 1.2 吉瓦。其余三台机组将于 2026 年底投入运营,每年一台,最终总装机容量达到 4.8 吉瓦。 2017-2023 年国家能源效率行动计划旨在到 2023 年将一次能源消耗减少 14%。这一节省相当于减少 6660 万吨二氧化碳当量排放。2017-2020 年期间,根据该行动计划,能源效率投资额为 48 亿美元,节省了 319 万吨石油当量能源。这一节省相当于减少 1000 万吨二氧化碳当量。土耳其电力市场在过去二十年中经历了重大转型,并在私营部门大规模参与下开始运作。私营部门的份额从 40% 上升到 2021 年的 83%。土耳其电力和天然气商品价格是欧洲最低的。土耳其通过两种主要支持机制支持可再生能源——可再生能源资源支持计划 (RERSS) 和可再生能源资源区 (RERA)。RERSS 以某些关税提供购买保证,而 RERA 提供招标流程来分配某些容量。此外,制造业的节能项目也通过补助和税收优惠政策得到支持。2021 年最后几天,通过修订法律,建筑、服务业和农业等占一次能源需求比重较高的其他行业也被纳入了支持范围。作为缓解气候变化威胁和适应气候变化的重要一步,土耳其议会于 2021 年批准了《巴黎协定》,并宣布将以发展中国家的身份实施该协定,且不会危及社会经济发展。此外,土耳其还承诺到 2053 年实现净零排放。新的天然气管道项目,即 TANAP 和 Turk Stream、更多的液化天然气进口、增强的存储容量、浮式存储再气化装置终端和土耳其在黑海发现的天然气,使来源多样化,并将地缘政治风险降至最低。为了揭示投资者环境的吸引力水平,值得一提的是,能源行业在土耳其的外国直接投资中占 11%(土耳其共和国投资局)。与 WEC 土耳其成员社区测试观点 世界能源问题调查的结果于 2022 年 2 月与 WEC 土耳其成员进行了讨论。在讨论中,确认了有关行动重点和关键不确定性的关键发现,并强调了以下三个论点:
[1] Dario Amodei、Chris Olah、Jacob Steinhardt、Paul Christiano、John Schulman 和 Dan Mané。2016 年。《人工智能安全中的具体问题》。CoRR abs/1606.06565 (2016)。[2] Berkeley J. Dietvorst、Joseph P. Simmons 和 Cade Massey。2015 年。《算法厌恶:人们在发现算法有错误后会错误地避开它们》。《实验心理学杂志:综合》144, 1 (2015),114。[3] Berkeley J. Dietvorst、Joseph P. Simmons 和 Cade Massey。2018 年。《克服算法厌恶:如果人们可以(即使稍微)修改算法,他们也会使用不完美的算法》。《管理科学》64, 3 (2018),1155–1170。 [4] Julie S. Downs、Mandy B. Holbrook、Steve Sheng 和 Lorrie Faith Cranor。2010 年。您的参与者是否在玩弄系统?筛查 Mechanical Turk 工人。在 SIGCHI 计算机系统人为因素会议论文集上。2399–2402。[5] Jodi Forlizzi 和 Carl DiSalvo。2006 年。家庭环境中的服务机器人:对家用 Roomba 吸尘器的研究。在第一届 ACM SIGCHI/SIGART 人机交互会议论文集上。[6] Dylan Hadfield-Menell、Smitha Milli、Pieter Abbeel、Stuart J. Russell 和 Anca Dragan。2017 年。逆向奖励设计。在神经信息处理系统的发展中。[7] Bill Hibbard。2012 年。避免意外的 AI 行为。在国际通用人工智能会议上。Springer,107–116。[8] Lynn M. Hulse、Hui Xie 和 Edwin R. Galea。2018 年。对自动驾驶汽车的看法:与道路使用者的关系、风险、性别和年龄。安全科学 102(2018 年),1–13。[9] Rafal Kocielnik、Saleema Amershi 和 Paul N. Bennett。2019 年。您会接受不完美的人工智能吗?探索调整人工智能系统最终用户期望的设计。在 CHI 计算系统人为因素会议论文集上。[10] Moritz Körber。2018 年。衡量对自动化信任的理论考虑和问卷的开发。在国际人体工程学协会大会上。Springer,13–30。 [11] Victoria Krakovna、Laurent Orseau、Miljan Martic 和 Shane Legg。2019 年。使用逐步相对可达性惩罚副作用。在 AI 安全研讨会 IJCAI 中。[12] Victoria Krakovna、Laurent Orseau、Richard Ngo、Miljan Martic 和 Shane Legg。2020 年。通过考虑未来任务来避免副作用。在第 20 届神经信息处理系统会议论文集上。[13] Miltos Kyriakidis、Riender Happee 和 Joost CF de Winter。2015 年。公众对自动驾驶的看法:对 5000 名受访者的国际问卷调查结果。交通研究 F 部分:交通心理学和行为 32(2015 年),127–140。 [14] Ramya Ramakrishnan、Ece Kamar、Debadeepta Dey、Julie Shah 和 Eric Horvitz。2018 年。《发现强化学习中的盲点》。《第 17 届自主代理和多代理系统国际会议论文集》。[15] Stuart Russell。2017 年。《可证明有益的人工智能》。《指数生命,下一步》(2017 年)。[16] Sandhya Saisubramanian、Ece Kamar 和 Shlomo Zilberstein。2020 年。一种减轻负面影响的多目标方法。在第 29 届国际人工智能联合会议论文集上。[17] Sandhya Saisubramanian 和 Shlomo Zilberstein。2021 年。通过环境塑造减轻负面影响。在第 20 届自主代理和多智能体系统国际会议论文集上。[18] Sandhya Saisubramanian、Shlomo Zilberstein 和 Ece Kamar。2020 年。避免因对人工智能系统知识不完整而产生的负面影响。CoRR abs/2008.12146 (2020)。[19] Rohin Shah、Dmitrii Krasheninnikov、Jordan Alexander、Pieter Abbeel 和 Anca Dragan。 2019. 世界状态中的隐含偏好。第七届国际学习表征会议论文集。[20] Alexander Matt Turner、Dylan Hadfield-Menell 和 Prasad Tadepalli。2020. 通过可实现效用保存实现保守代理。AAAI/ACM 人工智能、伦理与社会会议论文集。[21] Ming Yin、Jennifer Wortman Vaughan 和 Hanna Wallach。2019. 理解准确度对机器学习模型信任的影响。CHI 计算系统人为因素会议论文集。[22] Shun Zhang、Edmund H. Durfee 和 Satinder P. Singh。2018. 分解马尔可夫决策过程中对副作用的 Minimax-Regret 查询以实现安全最优。在第 27 届国际人工智能联合会议论文集上。
4761 CEST MRI 检测 oSafiya Aafreen 约翰霍普金斯大学 TBATBATBA 最新进展 数字海报 5099 自动后期处理 Eva Aalbregt 阿姆斯特丹 UMC TBATBATBA 各种情况 数字海报 6628 初步结果 Malene Aastrup MR 研究中心 TBATBATBA 代谢体成像 数字海报 6220 初步结果 Malene Aastrup MR 研究中心 TBATBATBA 超极化(非 G 数字海报 4286 时空变化 Esra Abaci Turk 波士顿儿童医院 2025 年 5 月 12 日 13:45 15:45 理解口腔 MRI 0607 加速高分辨率 Nastaren Abad GE HealthCare,Techno TBATBATBA 基于 AI 的采集和数字海报 0605 400 mT/m w 下的成像 Nastaren Abad GE 医疗技术 2025 年 5 月 15 日 16:00 18:00 磁场及其口腔 0606 在 Lo 下睡觉 Nastaren Abad GE 医疗技术 TBATBATBA 精神病学 - 功能性协同 数字海报 7283 Alireza Abaei 的临床前 ¹H MRS Ulm 大学 2025 年 5 月 14 日 08:15 10:15 临床前大脑和 Beyo Power Pitch 2297 生物目标体积 Parandoush Abbasian 曼尼托巴大学 TBATBATBA 成像和生物标志物传统海报 9551 单个受试者的稳定性 Shahrokh Abbasi-Rad 哈佛医学院 TBATBATBA 分析方法 传统海报 1369 深度学习FramewParisima Abdali 纽约大学 2025 年 5 月 13 日 08:15 10:15 钆及其他 I 口服 4643 定量评估Rasheed Abid 伊利诺伊理工学院 TBATBATBA 衰老:功能 数字海报 9147 几何衍生 Oluyemi Aboyewa 西北大学 TBATBATBA 传统图像重建 数字海报 1384 MRI 重建 w Daniel Abraham 斯坦福大学 2025 年 5 月 13 日 08:15 10:15 驾驭 MRO 的前沿 7097 定量验证 Sagar Acharya 高场 MR 中心,德 TBATBATBA 新型光谱传统海报 6591 肝脏 PDFF 定量 Berk Acikgoz 医院,伯尔尼大学 TBATBATBA 非侵入性成像 数字海报2936 稳健的脂肪分数 ma Berk Acikgoz Inselspital, Bern Univers TBATBATBA 脂肪和水分离 数字海报 4143 共享 GRAPPA calibBerk Acikgoz Inselspital, Bern Univers TBATBATBA 关注大脑:A 数字海报 1853 快速、运动稳健、MMichael Adam Medical University of Vie TBATBATBA 传统海报的未来前景 2828 全对比学习Rhea Adams Case Western Reserve 2025 年 5 月 12 日 16:00 18:00 完美浪潮:AI-PoOral 2834 全对比丘脑Rhea Adams Case Western Reserve 2025 年 5 月 13 日 13:30 15:30 数据预处理 口头 8872 直接估计 PeAbdoljalil Addeh University of卡尔加里 TBATBATBA 寿命 fMRI 数字海报 1746 超极化 1-13C 布科拉阿德贝辛 宾夕法尼亚大学 TBATBATBA超极化(非 G 数字海报 1288 扩散的影响 T Shekhar Adhikari 范德堡大学 Ins 2025 年 5 月 14 日 08:15 10:15 身体扩散 MRI:ModOral 1932 同时重复性 Anne Adlung 纽约大学 Gro TBATBATBA MR 指纹识别 数字海报 5693 同时 1H/23Na Anne Adlung 纽约大学 Gro TBATBATBA 聚焦大脑:A 数字海报 7743 基于区域和 vox Seyedeh Nas Adnani 奥本大学神经 TBATBATBA 大脑分析 数字海报 6915 脊髓 T2* 映射 Seyedeh Nas Adnani 奥本大学神经 TBATBATBA 从神经成像中获得的见解 传统海报 6660 Q 空间轨迹图像 Maryam Afzali 利兹大学2025 年 5 月 13 日 08:15 10:15 心律失常与扩散 口服 5925 单次 PD-FSE 膝关节 MHarsh Agarwal GE HealthCare TBATBATBA 关节成像 数字海报 6587 增强型胶质瘤 TumGunnhild Ager-Wick 卑尔根大学 TBATBATBA 物理与工程 数字海报 1940 解开微观结构 Manisha Aggarwal 约翰霍普金斯大学 2025 年 5 月 12 日 13:45 15:45 扩散:微观结构 口服 8695 将线圈拼接在一起 Reza Aghabagheri 大学医学中心 TBATBATBA 射频阵列和系统 数字海报 4140 Le 的预后效用 Owen Agnel 牛津大学 2025 年 5 月 12 日 16:00 18:00 新方法与应用 Power Pitch