OSE 6445 (3 Credits) Time: Tuesday, Thursday 3:00-4:15 Place: CREOL A214 Instructor: P. J. Delfyett, CREOL A-231, (407) 823-6812, delfyett@creol.ucf.edu Office Hours : Open door policy or from 1:30-3:00pm Tuesdays and Thursdays; RM A-231还可以,如果我有空,可以随时安排缩放会议。网络课程:每个学生都必须在课程的第一周结束前完成网络课程的作业。课程目标:让学生在开发和使用picsecond and flstsecond Photonic Technologies进行科学和商业应用的领域中熟练理解最先进的技术文献(即科学期刊出版物)。学生的学习成果:成功的学生将能够在分析和计算上分析超短脉冲传播,生成,测量系统。课程描述:入门概念(以下是了解超快光信号的生成,传输,检测和操纵所需的必要基本数量)。
摘要:超表面作为由亚波长结构构成的人工材料,具有强大的调控线性和非线性光场的能力,极大地推动了纳米光子学的发展。最近,等离子体超表面已被证明可以作为可饱和吸收体(SA),其调制性能远高于其他SA,表现出优异的非线性偏振传递函数。然而,由于等离子体共振的偏振依赖性,超表面饱和吸收体的工作带宽通常很窄,不利于宽带超快激光的产生。本文,我们提出了一种银双纳米棒等离子体超表面,实现了稳定的宽带饱和吸收,这归功于双棒结构独特的间隙共振模式。泵浦光同时激发精心排列的银纳米棒上的偶极共振和纳米棒对之间的间隙模式,提高了超表面可饱和吸收体的响应带宽。通过将超表面插入光纤激光器腔内,分别获得了工作在1.55和1.064 μ m处的稳定脉冲序列。该工作不仅进一步释放了超表面在超快激光领域的潜力,也为宽带非线性器件的设计提供了新的思路。关键词:等离子体超表面,宽带,可饱和吸收体,超快激光器,光纤激光器
图2激光表的概述和与SEM的接口。a,具有相关光束修改硬件的激光表的简化示意图。515 nm激光信号(绿线)起源于纤维激光器上的SHG模块,然后以9:1的比例分开。10%的功率被定向1型BBO,将其转换为257 nm UV脉冲(紫色线)。90%的功率被引导为安装在电动延迟阶段的逆转录器中,然后发送到SEM。b,在激光表的顶部视图实现,标有各种关键组件和激光路径。c,两个关键的SEM端口被标记,虚线表明绿色和紫外线激光脉冲如何进入系统。将UV脉冲定向到SEM阴极上,从而在色谱柱下产生光电子的脉冲。绿色脉冲被指向一个光学端口,该光端口导致最终到达标本的内部潜望镜。
能耗是任何电子设备最重要的方面之一,为了实现更好的可持续未来,需要进一步改进。这同样适用于商用光电探测器,它们使用巨大的外部偏置电压消耗大量能量。到目前为止,薄膜已广泛用于各种电磁辐射波段的光电探测。与基于纳米结构的设备相比,唯一阻碍它们发展的特性是性能较慢、响应度较低。然而,基于纳米结构的光电探测器的缺点是,由于设备制造步骤复杂且昂贵,它们缺乏大规模生产或商业化的可扩展性。解决这一限制的一个可行解决方案可能是使用混合结构,即 ZnO、(Al、Ga、In)N 和 GaAs 等高质量晶体材料与 MoS 2、石墨烯、WSe 2 和 SnS 2 组成的二维材料的组合。这将提供对带隙工程的广泛控制,可用于可扩展的模块化设备制造。这些方法有望开发出具有相对较高响应度和自供电光电探测器的光电探测器。当前的观点侧重于 III 族氮化物基光电探测器的进展及其使用混合 III 族氮化物/2D 界面的自供电、宽带和超快光电探测器的广阔前景。
大规模数据存储的爆炸性增长和对超快数据处理的需求需要具有出色性能的创新记忆设备。2D材料及其带有原子尖锐界面的范德华异质结构对内存设备的创新有着巨大的希望。在这里,这项工作呈现出所有由2D材料制成的功能层,可实现超快编程/擦除速度(20 ns),高消光率(最高10 8)和多位存储能力。这些设备还表现出长期的数据保留超过10年,这是由高栅极偶联比(GCR)和功能层之间的原子尖锐接口促进的。此外,这项工作证明了通过协同电气和光学操作在单个设备单元上实现“或”逻辑门的实现。目前的结果为下一代超速,超级寿命,非挥发性存储器设备提供了坚实的基础,并具有扩展制造和灵活的电子应用程序的扩展。
我们构思并构建一个位点原位高压时间分辨的超快光谱仪器,可在高压条件下促进超快泵 - 探针动力学测量。我们将超快泵 - 探针光谱系统与钻石砧室(DAC)系统集成在一起。显着,DAC和样品均固定在光路中,没有运动和在整个超快光谱实验中旋转,包括调整和校准压力。该仪器因此避免了由于样品运动或旋转而引起的插入伪像,从而实现了精确的高压超快泵 - 探针动力学研究。作为一个例子,我们比较了现场条件与现场条件对SR 2 IRO 4在0–44.5 GPA高压下的SR 2 IRO 4的超快动力学的影响。我们的数据和分析表明,使用现场原位布局可大大降低常规可能的伪像。我们的工作有助于高压超快科学调查发展为有希望的新领域,该领域可以探索高压制度中非平衡激发量子状态。
聚合物是超快激光器处理的首批材料之一。然而,尚未完全了解近红外激光束的吸收性质,因此以高能量效率处理聚合物材料仍然具有挑战性。在这项研究中,聚丙烯(PP)(PP)的光学特性(反射率,透射率和吸收性)的脉冲到脉冲演化,这是在许多工业应用中广泛使用的重要聚合物材料,是通过对广泛的脉动能进行的时间分辨测量来确定的。目标是区分不同激光 - 摩擦相互作用方案中的线性和非线性吸收,并选择产生最高能量效率的处理条件。实验是通过在基于椭圆形的镜像设置中记录每个激光脉冲的反射和传输来执行的,该设置可以收集散射反射,并几乎完全覆盖。吸收是根据实验数据计算的,并使用线性和非线性吸收组成的模型来分析结果。发现PP从脉冲到脉冲发生了巨大的形态变化,伴随着光学特性的变化,即激光条件的调整以充分利用激光能。他们的结果可以有助于提高聚合物对高通量操作的超舒服激光处理中的能源效率。
摘要:由于开发了搅动的脉冲扩增技术,超快激光技术已从超快转移到了超强。超快激光技术,例如飞秒激光器和皮秒激光器,已迅速成为处理脆性和硬材料以及复杂的微型组件的灵活工具,这些工具被广泛用于医疗,航空航天,半导体应用等。但是,超快激光与脆性和硬材料之间相互作用的机制尚不清楚。同时,这些材料的超快激光处理仍然是一个挑战。此外,还需要开发使用超快激光器的高效和高精度制造。本综述着重于脆性和硬材料的超快激光处理的常见挑战和现状,例如基于镍的超合金,热屏障陶瓷,钻石,二氧化硅和碳化硅复合材料。首先,根据其带隙宽度,导热率和其他特征来区分不同的材料,以揭示在脆性和硬材料的超快激光处理过程中激光能量的吸收机制。其次,通过分析激光诱导的等离子体中的光子与电子和离子之间的相互作用以及与材料连续体的相互作用来研究激光能量转移和转化的机制。第三,讨论了关键参数与超快激光处理质量之间的关系。最后,详细探讨了复杂的三维微型组件的高效和高精度制造的方法。
目的:评估小儿患者超快脑磁共振成像(MRI)的可行性。材料和方法:我们回顾性地审查了194名0至19岁(中值10.2岁)的儿科患者,他们在2019年5月至2020年8月之间均接受过超快和常规脑MRI。超快MRI序列包括T1和T2加权图像(T1WI和T2WI),流体衰减的反转恢复(FLAIR),T2*加权图像(T2*WI)以及扩散加权侵袭性图像(DWI)。定性图像质量和病变评估是由两位盲人放射学家以5点李克特量表进行的,每种方案对T1WI,T2WI和FLAIR序列的病变计数和大小进行定量评估。Wilcoxon签名的秩检验和类内相关系数(ICC)分析用于比较。结果:超快MRI的等效图像对比度的总扫描时间为1分钟44秒,传统MRI为15分钟30秒。总体而言,超快MRI的图像质量低于常规MRI的平均质量得分,超过序列MRI的平均质量得分范围从2.0到4.8,跨序列的常规MRI的图像得分范围为4.8至5.0(T1WI,T2WI,T2WI,FLAIR,FLAIR,FLAIR和T2*WI的p <0.001 n.01 wi n.018 [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [reader 1] [3]相对于常规MRI,超快MRI的病变检测率如下:T1WI,97.1%; T2WI,99.6%; Flair,92.9%; T2*WI,74.1%;和DWI,100%。超快和常规MRI之间的病变大小测量的ICC(95%置信区间)如下:T1WI,0.998(0.996–0.999); T2WI,0.998(0.997–0.999);和Flair,0.99(0.985–0.994)。结论:超快MRI大大减少了扫描时间,并提供可接受的结果,尽管图像质量略低于常规MRI,以评估儿科患者的颅内异常。关键字:超快磁共振成像;减少扫描时间;图像质量;小儿大脑成像;回声平面成像