使用未增强的机器学习,基于大脑MRI衍生的体积特征将多发性硬化症患者(PWM)分层的抽象目标。方法回顾性地收集了包括3D-T1W和FLAIR-T2W序列的复发PWM的3-T脑MRI,以及残疾状态量表(EDSS)的扩大和长期(10±2年)临床结果(EDS,认知和渐进式课程)。从MRI中,脱髓鞘病变和116个Atlas定义的灰质区域的体积自动分割,并表示为引用外部种群的Z分数。在特征选择之后,基线MRI衍生的生物标志物进入了亚型和阶段推断(sovera)算法,该算法估计了以生物标志物进化的不同模式和亚组中的不同模式为特征的亚组。然后将训练的模型应用于纵向MRI。亚型和阶段变化随着时间的变化的稳定性分别通过Krippendorf的Sα和多级线性回归模型评估。通过序数/逻辑回归分析评估了维持分类的预后相关性。结果,我们选择了425个PWM(35.9±9.9岁; f/m:301/124),对应于1129次MRI扫描,以及健康对照(n = 148; 35.9±13.0年; f/m:f/m:77/71)和外部PWMS和外部PWMS(n = 80; 40.40; 40.4±11.9岁; f/m:56/M:56/M:56/M:56/M:56/M:56/。基于11种生物标志物的特征选择,确定了两个亚型,指定为“深灰质(DGM) - 首先”亚型(n = 238)和“ Cortex-first”亚型(n = 187),根据萎缩模式。亚型随着时间的推移是一致的(α= 0.806),年阶段显着增加(b = 0.20; p <0.001)。EDSS与阶段和DGM-FirST亚型相关(p≤0.02)。基线阶段预测了长期残疾,过渡到渐进型病程和认知障碍(p≤0.03),后者也与DGM-First第一个亚型有关(P = 0.005)。结论的无监督学习模型对大脑MRI衍生的体积特征提供了对PWM的生物学可靠和预后有意义的分层。关键点•脑MRI衍生的体积特征的无监督建模可以提供多发性硬化症患者的单访问分层。•所谓的分类往往会随着时间的流逝而保持一致,并捕获与疾病相关的脑损伤进展,从而支持模型的生物学可靠性。•基线分层可以预测长期的临床障碍,认知和过渡到次要进行的过程。
我们的队列包括 426 例进行性核上性麻痹病例,其中 367 例至少接受过一次随访扫描,另 290 例为对照。在进行性核上性麻痹病例中,357 例临床诊断为进行性核上性麻痹 - 理查森综合征,52 例为进行性核上性麻痹 - 皮质变异(进行性核上性麻痹 - 额叶、进行性核上性麻痹 - 言语/语言或进行性核上性麻痹 - 皮质基底节),17 例为进行性核上性麻痹 - 皮质下变异(进行性核上性麻痹 - 帕金森病或进行性核上性麻痹 - 进行性步态冻结)。亚型和分期推断应用于从基线结构(T1 加权)MRI 扫描中提取的体积 MRI 特征,然后用于对随访扫描进行亚型和分期。随访中的亚型和分期用于验证亚型和分期分配的纵向一致性。我们进一步比较了每种亚型的临床表型,以深入了解进行性核上性麻痹病理、萎缩模式和临床表现之间的关系。
本研究应用自适应混合独立成分分析 (AMICA) 来学习一组 ICA 模型,每个模型都通过为每个已识别的成分过程拟合分布模型进行优化,同时最大化多通道 EEG 数据集某些时间点子集内的成分过程独立性。在这里,我们将 20 模型 AMICA 分解应用于长时间(1-2 小时)、高密度(128 通道)EEG 数据,这些数据是在参与者使用引导想象来想象刺激 15 种特定情绪体验的情境时记录的。这些分解倾向于返回识别单一情绪想象期间的时空 EEG 模式或状态的模型。模型概率转变反映了情绪想象过程中 EEG 动态的时间过程,而这种过程因情绪而异。用于解释想象的“悲伤”和“快乐”的模型之间的转换更加突然并且与参与者的报告更加一致,而用于想象的“满足”的转换延伸到相邻的“放松”期。大脑可定位的独立成分过程 (IC) 的空间分布在参与者中 (跨情绪) 比在情绪 (跨参与者) 中更相似。在参与者中,在左侧前额叶、后扣带皮层、右侧岛叶、双侧感觉运动、运动前区和联想视觉皮层中或附近发现了情绪想象与放松之间 IC 空间分布 (即偶极子密度) 存在差异的大脑区域。在积极情绪和消极情绪之间没有发现偶极子密度的差异。高密度 EEG 动态变化的 AMICA 模型可能允许在情绪体验过程中基于数据洞察大脑动态,可能提高基于 EEG 的情绪解码的性能并增进我们对情绪的理解。
摘要:磁共振成像 (MRI) 通常会招募多个序列(本文定义为“模态”)。由于每种模态都旨在提供不同的解剖和功能临床信息,因此不同模态之间的成像内容存在明显差异。模态间和模态内仿射和非刚性图像配准是临床成像中必不可少的医学图像分析过程,例如,在成像之前,需要在不同的 MRI 模态、时间阶段和切片之间获取和临床评估生物标志物。尽管在实际临床场景中通常需要仿射和非刚性图像配准,但尚未使用单一无监督模型架构进行广泛研究。在我们的工作中,我们提出了一种无监督深度学习配准方法,可以同时准确地模拟仿射和非刚性变换。此外,逆一致性是基本模态间配准属性,深度学习配准算法并未考虑该属性。为了解决逆一致性问题,我们的方法执行双向跨模态图像合成以学习模态不变的潜在表示,并涉及两个因式分解变换网络(每个编码器-解码器通道一个)和一个逆一致性损失以学习保持拓扑的解剖变换。总体而言,我们的模型(名为“FIRE”)在多模态脑 2D 和 3D MRI 以及模态内心脏 4D MRI 数据实验中表现出比参考标准基线方法(即使用 ANTs 工具箱实现的对称归一化)更好的性能。我们专注于解释模型数据组件,以增强模型在医学图像配准中的可解释性。在计算时间实验中,我们表明 FIRE 模型在节省内存的模式下运行,因为它可以在训练阶段直接学习保持拓扑的图像配准。因此,我们展示了一种高效且通用的配准技术,该技术在临床环境中的多模态图像配准中具有优势。
抽象目标。了解驾驶员的认知负荷对于道路安全至关重要。大脑传感有可能客观地衡量驾驶员认知负荷。我们旨在开发一个高级机器学习框架,用于使用功能近红外光谱(FNIRS)对驱动程序认知负载进行分类。方法。,我们在驱动模拟器中使用FNIRS进行了一项研究,其n返回任务用作辅助驾驶员的结构性认知负载。为了对不同的驱动程序认知负载水平进行分类,我们检查了卷积自动编码器(CAE)和回声状态网络(ESN)自动编码器的应用,以从FNIRS中提取功能。主要结果。通过使用CAE,将两个和四个级别的驱动程序认知负载分类的精度分别为73.25%和47.21%。所提出的ESN自动编码器在没有窗口选择的情况下实现了组级模型的最新分类结果,精度为80.61%和52.45%,用于分类两个和四个级别的驱动程序认知负载。意义。这项工作为使用FNIRS在现实世界应用中测量驱动程序认知负载奠定了基础。此外,结果表明,所提出的ESN自动编码器可以有效地从FNIRS数据中提取时间信息,并且对于其他FNIRS数据分类任务很有用。
摘要:可再生能源(RESS)在能量混合中的渗透正在确定以分散功率产生为特征的能量情景。在Ress发电技术之间,太阳能光伏(PV)系统构成了非常有前途的选择,但是由于太阳能的间歇性质,它们的生产无法编程。PV设施与电池储能系统(BESS)之间的耦合允许在发电中实现更大的灵活性。但是,由于大量可能的配置,PV+Bess杂种植物的设计阶段具有挑战性。本文提出了一个初步程序,旨在预测一个适合与给定的PV植物配置结合的电池家族。提出的程序适用于建造的新假设工厂,以满足商业和工业负载的能源需求。根据对类似的实际植物进行的性能分析,估算了PV系统产生的能量。电池操作是通过分别调节电荷和放电的两个决策树样结构来建立的。最后,将无监督的聚类应用于所有可能的PV+Bess配置,以识别可行解决方案家族。
摘要:水是生命的秘诀,占地70%以上。必须保护我们周围的水资源免受污染和忽视,这可能导致生命和健康丧失。人工智能(AI)有可能改善水质分析,预测和监测系统,以进行可持续和环保的水资源管理。因此,这项工作着重于代表水状态并确定其适用性类别(即安全或不安全)的多模型学习功能。这是通过在融合其异常值后在监督算法和无监督算法之间建立共同混合模型来完成的。此外,还应用了配子群群的优化算法来找到最佳的超参数。使用了两个数据集,在第一个数据集中,提出的混合模型在准确性,AUC和F1分数上优于99.2%的其他模型,但在第二个数据集中,在第二个数据集中,它的精度达到了大约92%的f1 cec,incece incecy incc and cocc and cocc and cocc and cocc and cocc and cocc and cocc,and cc inc inc ancc and coct ycc and acc and c。最后,论文提供了一种方法,研究人员可以使用混合机器学习来预测水质。
无监督异常检测是一种常用的神经成像数据分析方法,因为它可以从未标记的数据中识别出各种异常。它依赖于重建特定于受试者的健康外观模型,受试者的图像可以与该模型进行比较以检测异常。在文献中,异常检测通常依赖于分析受试者的真实图像与其伪健康重建之间的残差图像。然而,这种方法有局限性,部分原因是伪健康重建不完善,并且缺乏自然阈值机制。我们提出的方法受到 Z 分数的启发,利用健康人群的变异性来克服这些限制。我们对 ADNI 数据库中的 3D FDG PET 扫描进行的实验证明了我们的方法在准确识别模拟阿尔茨海默病相关异常方面的有效性。
尽管使用多电极阵列记录的数据具有高维性,但与行为相关的神经群体活动被认为是固有的低维。因此,使用潜在变量模型预测神经群体记录的行为已被证明是最有效的。然而,随着时间的推移,单个神经元的活动可能会漂移,并且由于植入的神经探针的移动,不同的神经元将被记录下来。这意味着,在某一天训练预测行为的解码器在另一天测试时表现更差。另一方面,有证据表明,行为的潜在动态即使在数月和数年内也可能保持稳定。基于这个想法,我们引入了一个模型,该模型能够从同一动物记录的以前未见过的数据中推断出与行为相关的潜在动态,而无需重新校准解码器。我们表明,无监督域自适应与经过多次训练的顺序变分自动编码器相结合,可以实现对未见过数据的良好泛化,并正确预测传统方法无法预测的行为。我们的研究结果进一步支持了行为相关的神经动力学低维且随时间稳定的假设,并将使脑机接口技术更加有效和灵活地使用。
Alban Gallard,Auriane Bidaut,Arnaud Hubert,Elif Sade,Sylvestre Marechaux等人。通过无需临床和应变的临床和应变群集,响应者轮廓的特征 - 响应者概述,用于心脏重新同步治疗。美国超声心动图学会杂志,2021,34(5),pp.483-493。10.1016/j.echo.2021.01.019。hal-03156865