Loading...
机构名称:
¥ 1.0

本研究应用自适应混合独立成分分析 (AMICA) 来学习一组 ICA 模型,每个模型都通过为每个已识别的成分过程拟合分布模型进行优化,同时最大化多通道 EEG 数据集某些时间点子集内的成分过程独立性。在这里,我们将 20 模型 AMICA 分解应用于长时间(1-2 小时)、高密度(128 通道)EEG 数据,这些数据是在参与者使用引导想象来想象刺激 15 种特定情绪体验的情境时记录的。这些分解倾向于返回识别单一情绪想象期间的时空 EEG 模式或状态的模型。模型概率转变反映了情绪想象过程中 EEG 动态的时间过程,而这种过程因情绪而异。用于解释想象的“悲伤”和“快乐”的模型之间的转换更加突然并且与参与者的报告更加一致,而用于想象的“满足”的转换延伸到相邻的“放松”期。大脑可定位的独立成分过程 (IC) 的空间分布在参与者中 (跨情绪) 比在情绪 (跨参与者) 中更相似。在参与者中,在左侧前额叶、后扣带皮层、右侧岛叶、双侧感觉运动、运动前区和联想视觉皮层中或附近发现了情绪想象与放松之间 IC 空间分布 (即偶极子密度) 存在差异的大脑区域。在积极情绪和消极情绪之间没有发现偶极子密度的差异。高密度 EEG 动态变化的 AMICA 模型可能允许在情绪体验过程中基于数据洞察大脑动态,可能提高基于 EEG 的情绪解码的性能并增进我们对情绪的理解。

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习PDF文件第1页

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习PDF文件第2页

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习PDF文件第3页

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习PDF文件第4页

使用高密度脑电图进行情绪想象过程中大脑状态动态的无监督学习PDF文件第5页

相关文件推荐