卷积神经网络 (CNN) 被广泛用于通过脑电图 (EEG) 信号识别用户的状态。在之前的研究中,EEG 信号通常以高维原始数据的形式输入 CNN。然而,这种方法很难利用大脑连接信息,而这些信息可以有效描述大脑功能网络并估计用户的感知状态。我们引入了一种利用 CNN 的大脑连接的新分类系统,并使用三种不同类型的连接测量通过情绪视频分类验证了其有效性。此外,提出了两种数据驱动的方法来构建连接矩阵,以最大限度地提高分类性能。进一步的分析表明,与目标视频的情绪属性相关的大脑连接的集中程度与分类性能相关。© 2020 Elsevier Ltd. 保留所有权利。
主要关键词