勒索软件攻击已成为一种主要的网络安全威胁,其越来越复杂的技术经常逃避传统的检测方法。提出了一个新颖的框架,该框架通过蒙特卡洛树搜索(MCT)的动态决策能力来协同深度学习模型的预测优势,从而为不断发展的勒索软件变体带来的挑战提供了全面的解决方案。通过严格的评估,混合动力框架在降低误报的同时表现出显着提高的检测准确性,表现优于常规机器学习模型。MCT的整合允许探索多个决策路径,从而实时增强了系统对新型威胁的适应性。此外,提出的模型还保持了计算效率,使其对于企业环境中的实时部署而言是可行的。结果证明了混合模型是现代网络安全中强大的防御机制的潜力,提供了一种可扩展有效的工具来减轻勒索软件威胁。
摘要:至关重要的是要问,代理如何仅使用通过习惯性感觉运动经验获得的部分世界模型来生成行动计划,从而实现目标。尽管许多现有的机器人研究都使用了前向模型框架,但存在高自由度的泛化问题。当前的研究表明,采用生成模型的预测编码 (PC) 和主动推理 (AIF) 框架可以通过学习低维潜在状态空间中的先验分布来开发更好的泛化,该先验分布表示从习惯性感觉运动轨迹中提取的概率结构。在我们提出的模型中,学习是通过推断最佳潜在变量以及突触权重来最大化证据下限来进行的,而目标导向规划是通过推断潜在变量来最大化估计下限来完成的。我们提出的模型在模拟中使用简单和复杂的机器人任务进行了评估,通过为正则化系数设置中间值,证明了在有限的训练数据下学习中具有足够的泛化能力。此外,比较模拟结果表明,由于先验学习将运动计划的搜索限制在习惯轨迹范围内,因此所提出的模型在目标导向规划中优于传统的前向模型。
Call: HORIZON-CL6-2024-CLIMATE-01 Topic: EU-China international cooperation on improving monitoring for better integrated climate and biodiversity approaches, using environmental and Earth observation Type of Action: HORIZON-RIA Acronym: BioClima GA Number: 101181408 Duration: 48 months Start Date: 01 Jan 2025 Project Cost: €4,999,437.50
沉积 (RPCVD) 系统以尽量减少表面损伤。起始表面是二氢化物和一氢化物终止的组合。ALE 实验周期包括用等离子体中的氦离子轰击基底 1-3 分钟以使其解吸,然后在无等离子体激发的情况下,在一定分压范围(1&- 7 Torr 至 1.67 mTorr)、温度范围(250 0 C-400 0 C)和时间范围(20 秒至 3 分钟)内用乙硅烷对表面进行剂量控制,以自限制方式将 Si2H6 吸附在轰击产生的裸露表面 Si 原子上,形成硅基 (SiH3) 物种,从而形成氢终止表面。在 3 分钟的轰击周期内,获得的最大生长量为每周期 0.44 个单层。随着轰击周期时间的减少,每周期的生长量减少,表明氢去除的百分比随着轰击时间的增加而减少。
CO 2 -羽状地热 (CPG) 技术是一种地热发电系统,它使用地质储存的 CO 2 作为地下热提取流体来产生可再生能源。CPG 技术可以通过提供可调度电力来支持可变风能和太阳能技术,而灵活 CPG (CPG-F) 设施可以同时提供可调度电力、能量存储或两者。我们提出了第一项研究,研究 CPG 发电厂和 CPG-F 设施如何通过将工厂级发电厂模型与系统级优化模型相结合,作为可再生重度电力系统的一部分运行。我们以美国北达科他州为例,展示 CPG 将地热资源基础扩展到通常不考虑地热发电的地点的潜力。我们发现,太阳-风能-CPG 模型的最佳系统容量可以比峰值需求高出 20 倍。CPG-F 设施可以通过在季节性和短期时间范围内提供能量存储,将这种模拟系统容量降低到峰值需求的 2 倍多一点。 CPG-F 设施的运营灵活性进一步提高了 CPG 发电厂的环境空气温度限制,通过在临界温度下储存能量。在所有情况下,需要对二氧化碳排放征收每吨数百美元的税,才能在经济上证明使用可再生能源而不是天然气发电厂是合理的。我们的研究结果表明,CPG 和 CPG-F 技术可能在未来的可再生重电系统中发挥宝贵作用,我们提出了一些建议,以进一步研究其整合潜力。
4 md.devendran@gmail.com摘要:鸟类鉴定在生物多样性保护和生态学研究中起着至关重要的作用,为栖息地健康和物种分布提供了见解。识别鸟类物种的传统方法是时间密集型,容易出现人为错误,因此需要自动解决方案。这个项目是使用深度学习的鸟类识别,提出了一个先进的系统,以利用深度学习的力量准确地从图像中识别鸟类。该系统利用卷积神经网络(CNN),以其在图像分类任务方面的熟练程度而闻名。一个包含多种鸟类图像的数据集进行了预处理并增强,以增强模型的鲁棒性和泛化。模型架构旨在提取复杂的特征,即使在诸如不同的照明条件,遮挡或类似物种的外观等挑战性的情况下,也可以准确识别。使用准确性,精度,召回和F1得分等指标评估模型的性能,以确保全面验证。结果表明,对传统机器学习方法的准确性改善了,这表明了物种识别中深度学习的潜力。该项目对野生动植物监测,生态研究和教育工具的应用有望,从而促进了意识和保护工作。未来的工作可能包括将系统集成到移动应用中,或将其部署在现场条件下的实时鸟类识别。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
2025年1月15日撰写:纳粹·安迪比(Nazanin Andalibi)(密歇根大学),大卫·丹克斯(加利福尼亚大学,圣地亚哥分校),海莉·格里芬(Haley Griffin),海莉·格里芬(计算机研究协会),玛丽·卢·马赫(Mary Lou Maher)(计算机研究协会),杰西卡·麦克莱恩(JESSICA MCCLEARN(GOOGLE),Google)健康),凯蒂·西克(Katie Siek)(印第安纳大学),塔米·托斯科斯(Tammy Toscos)(Parkview Health),Helen V. Wright(计算研究协会)和Pamela Wisniewski(Vanderbilt University)此反应来自计算机研究协会(CRA)的计算社区联合会(CCC)(CCC)和CRA-Industry(CRA-Industry)。CRA是近250个北美计算机研究组织的协会,包括学术和工业,以及来自六个专业计算社会的合作伙伴。CCC的任务是CRA的小组委员会,是为了追求创新的,高影响力的计算研究,与紧迫的国家和全球挑战保持一致。CRA的另一个小组委员会CRA-I的使命是召集行业合作伙伴计算共同利益的研究主题,并将其与CRA的学术和政府选民联系起来,以促进共同利益和改善社会成果。请注意,本材料中表达的任何意见,发现,结论或建议是作者的意见,不一定反映了作者隶属关系的观点。下面我们回答了提出评论请求的问题1-9、11和13-14。
一方面,有人认为不应该允许在课堂上使用人工智能,因为这会导致学生过度依赖技术,从而阻碍学生的学习和技能发展。人工智能技术非常强大。虽然它们可以帮助学生完成各种学习任务,但学生可能会过度使用这些技术,以至于他们无法培养独立解决问题所需的技能。人工智能在课堂上的使用可能会变得如此普遍,以至于学生在大多数任务和决策中都依赖该技术。因此,有人认为,在课堂上使用人工智能可能是有害的,因为学生永远不会培养独立解决问题和推理所需的技能。由此导致的技能缺乏可能会对学生的自主性产生深远影响。