摘要 - 目的:通过使用单个校准数据,当前的最新方法显着提高了稳态诱发电位(SSVEP)的检测性能。但是,耗时的校准会限制了培训试验的数量,并可能导致视觉疲劳,从而削弱了单个培训数据的效率。为解决此问题,本研究提出了一种新型的受试者间和受试者内最大相关性(IISMC)方法,以通过采用跨主体间和受试者的相似性和可变性来增强SSVEP识别的鲁棒性。通过有效的转移学习,在相同任务下的类似经验在主题之间共享。方法:IISMC从自己和其他受试者中提取主题的特定信息和与任务相关的相似信息,通过最大化和内部对象内相关性来执行相同任务。多个弱分类器是由几个现有主题构建的,然后集成以通过平均加权来构建强晶格。最后,为目标识别获得了强大的融合预测指标。结果:在35个受试者的基准数据集上验证了所提出的框架,实验结果表明,IISMC获得的性能要比与TART与任务相关的成分分析(TRCA)的状态更好。明显:所提出的方法具有开发高速BCI的巨大潜力。
摘要:在基于稳态视觉诱发电位 (SSVEP) 的脑机接口 (BCI) 研究的频率识别各种方法中,任务相关成分分析 (TRCA) 引起了广泛关注,它提取用于对脑电图 (EEG) 信号进行分类的判别空间滤波器。与现有的 SSVEP 方法相比,基于 TRCA 的 SSVEP 方法具有更低的计算成本和更高的分类性能。尽管基于 TRCA 的 SSVEP 方法很实用,但在使用短窗口 EEG 信号的情况下,它仍然会受到频率识别率下降的影响。为了解决这个问题,我们在此提出了一种改进的 SSVEP 解码策略,该策略通过执行两步 TRCA 不受窗口长度影响。所提出的方法重用了与 TRCA 生成的目标频率相对应的空间滤波器。随后,所提出的方法通过关联单个模板和测试数据来强调目标频率的特征。为了评估所提方法的性能,我们使用了包含 35 名受试者的基准数据集,并确认与其他现有 SSVEP 方法相比,其性能显著提高。这些结果表明,该方法适合作为基于 SSVEP 的 BCI 应用的有效频率识别策略。
抽象目标。本研究旨在建立一个广义的转移学习框架,以通过利用跨域数据传输来提高稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCIS)的性能。方法。我们通过结合了最小二乘转换(LST)的转移学习来增强基于最新的模板的SSVEP解码,以利用跨多个域(会话,主题和脑电图蒙太奇)利用校准数据。主要结果。研究结果验证了LST在跨域传输现有数据时消除SSVEP的可变性的功效。此外,基于LST的方法比标准与任务相关的组件分析(TRCA)的方法和非第一个天真转移学习方法明显更高的SSVEP解码精度。意义。这项研究证明了基于LST的转移学习能够在各种情况下对其原理和行为进行深入研究,从而利用主题和/或设备的现有数据。当校准数据受到限制时,提出的框架显着提高了标准TRCA方法的SSVEP解码精度。其在校准减少方面的性能可以促进基于SSVEP的BCIS和进一步的实用应用。
摘要:大脑 - 计算机接口(BCI)可以通过注册和处理脑电图(EEG)信号来提取有关受试者意图的信息,以生成对物理系统的操作。稳态视觉诱发的电位(SSVEP)是当受试者凝视着视觉刺激时产生的。通过光谱分析并测量其谐波含量的信噪比(SNR),可以识别观察到的刺激。刺激颜色很重要,一些作者提出了红色,因为它具有吸引注意力的能力,而另一些作者则拒绝了它,因为它可能会诱发癫痫发作。绿色也已提出,据称白色可能会产生最好的信号。关于频率,尽管尚未彻底研究高频,但声称中间频率产生了最佳的SNR,并且由于该频带的自发性脑活动较低,因此可能是有利的。在这里,我们以三个频率显示白色,红色和绿色刺激:5(低),12(中)和30(高)Hz至42个受试者,并进行比较以找到可以产生最佳SNR的。我们的目标是知道对白色的响应是否像红色一样强,并且对高频的响应是否与较低频率触发的响应一样强。注意力。方差分析(ANOVA)显示了具有中间频率的最佳SNR,其次是低,最终是高频率的。白色在12 Hz时给出了红色的SNR,绿色为5 Hz,在30 Hz时没有差异。这些结果表明中间频率是可取的,并且可以避免使用红色。相关性分析还显示了注意力低频与SNR之间的相关性,因此表明对于低频,更多的注意力能力会带来更好的结果。
1个心理科学学院,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 2英国牛津大学医学院实验心理学系; 3墨尔本墨尔本大学心理科学学院,澳大利亚墨尔本; 4澳大利亚堪培拉大学卫生学院心理学学科; 5特纳大脑与心理健康研究所,澳大利亚墨尔本莫纳什大学医学院,护理与健康科学学院; 6日本苏亚国家信息与通信技术学院(NICT)信息与神经网络中心(Cinet); 7高级电信研究计算神经科学实验室,2-2-2 Hikaridai,Seika-Cho,Soraku-Gun,京都,日本,日本
视觉诱发电位(VEP)对周期性刺激通常用于大脑计算机界面中的有利特性,例如高目标识别精度,较小的训练时间和较低的目标干扰。传统的周期性刺激会导致由于连续和高对比度刺激而导致主观的视觉疲劳。在这项研究中,我们将准周期和混乱的复杂刺激与常见的周期性刺激进行了比较,以与基于VEP的大脑计算机界面(BCIS)一起使用。规范相关分析(CCA)和相干方法用于评估三个刺激组的性能。通过视觉模拟量表(VAS)评估了由提出的刺激引起的主观疲劳。使用M2模板方法使用CCA,与Quasi-periodic(M = 78.1,SE = 2.6,P = 0.008)和周期性(M = 64.3,SE = 1.9,SE = 1.9,P = 0.0001)相比,混乱刺激的目标识别精度最高(M = 86.8,SE = 1.8)。对疲劳率的评估表明,与准周期性(p = 0.001)和周期性(p = 0.0001)刺激组相比,混乱刺激引起的疲劳较少。另外,与周期性刺激相比,准周期性刺激导致疲劳率较低(p = 0.011)。我们得出的结论是,与具有CCA的其他两个刺激组相比,混沌组的靶标识别结果更好。此外,与周期性和准周期性刺激相比,混乱的刺激导致主观视觉疲劳较少,并且可以适合设计新的舒适的基于VEP的BCIS。
摘要:与替代方法相比,由于较高的信息传输速率和最少的训练设置更容易设置,大脑计算机界面(BCI)的稳态视觉诱发电位(SSVEP)方法很受欢迎。具有精确生成的视觉刺激频率,可以将大脑信号转换为外部动作或信号。传统上,使用或不带有凝胶的电极从枕骨区域收集SSVEP数据,通常安装在头顶上。在这项实验研究中,我们开发了一个入耳式电极来收集四个不同频率的SSVEP数据,并将其与枕头皮电极数据进行比较。来自五个参与者的数据证明了基于耳电极的SSVEP的可行性,显着增强了可穿戴BCI应用的可实用性。
每个宠物刷新中内置的ActivePure®技术是基于最初在国际空间站使用的技术的变体,并被公认为其类别中的独家认证太空技术™。
个人的活动和行为完全通过脑电波控制[1]。通过神经系统将来自大脑的信号传递到人体的每个器官。由于神经肌肉疾病(包括肌萎缩性侧索硬化症(ALS)和锁定综合征)引起的,个体的运动功能丢失了[2]。在这些情况下,个人无法使用任何智力或表达方式与他人进行交流[3]。要提出澄清,研究人员正试图发现广泛的辅助设备。BCI的想法正在研究人员在这些辅助设备中进行广泛研究。在每种BCI技术中,都将特定的认知任务解释到设备命令中,该任务可用于处理辅助设备[4] [3]。脑部手术轮椅,家庭设备控制,机器人臂指挥,拼写技术,工作量识别和身份验证检测系统是广泛采用的BCI应用程序[5] [6]。
这项工作旨在设计,开发和评估基于稳态视觉诱发电位(SSVEP)的BCI系统。 div>该应用程序是通过Valladolid大学生物医学工程小组创建的Medusa平台开发的。 div>为此,在Python中实现了应用程序的图形接口和信号处理方法。 div>所研究的BCI系统是一个拼写器,可让您通过在SSVEPS EEG中检测到矩阵单元中代表的命令。 div>后者是由视觉刺激在一定刺激频率下引起的。 div>在审查了最新的现状后,得出的结论是,实现这一目标的最佳方法是通过关节频率案例编码范式和规范处理方法相关性分析。 div>