大脑中周期性信号称为稳态视觉诱发电位 (SSVEP),由闪烁刺激引起。它们通常通过回归技术检测,该技术需要相对较长的试验长度来提供反馈和/或足够数量的校准试验才能在脑机接口 (BCI) 的背景下可靠地估计。因此,对于设计用于使用 SSVEP 信号操作的 BCI 系统,可靠性是以速度或额外记录时间为代价的。此外,无论试验长度如何,当存在影响对闪烁刺激的注意力的认知扰动时,无校准回归方法已被证明会出现显著的性能下降。在本研究中,我们提出了一种称为振荡源张量判别分析 (OSTDA) 的新技术,该技术提取振荡源并使用新开发的基于张量的收缩判别分析对其进行分类。所提出的方法对于只有少量校准试验可用的小样本量设置非常可靠。此外,它在低通道数和高通道数设置下都能很好地工作,试验时间短至一秒。 OSTDA 在不同实验设置(包括具有认知障碍的实验设置)下的表现与其他三种基准最新技术相似或明显更好(即具有控制、听力、口语和思考条件的四个数据集)。 总体而言,在本文中,我们表明 OSTDA 是所有研究管道中唯一能够在所有分析条件下实现最佳结果的管道。 2021 由 Elsevier BV 出版
[1] Muse™:Muse 2:脑感应头带 - 技术增强冥想,https://choosemuse.com/muse-2/。(访问日期:2021/12/01)。[2] FocusCalm:FocusCalm — 训练你的大脑以减轻压力 — 冥想头带,https://focuscalm. com/。(访问日期:2021/12/01)。[3] NextMind:NextMind - 实时脑机接口 - 立即订购你的开发套件,https://www.next-mind.com/。(访问日期:2021/12/01)。 [4] Parini, S.、Maggi, L.、Turconi, AC 和 Andreoni, G.: 基于四类 SSVEP 范式的稳健且自定步调的 BCI 系统:高传输率直接脑通信的算法和协议,计算智能与神经科学,第 2009 卷,第 1-11 页 (2009)。[5] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 使用新颖的 BCI 向导对基于 SSVEP 的 BCI 进行自主参数调整,神经科学前沿,第 9 卷,第 474 页 (2015)。[6] Gembler, F.、Stawicki, P. 和 Volosyak, I.: 探索基于多目标 SSVEP 的 BCI 应用的可能性和局限性,2016 年第 38 届国际
我们展示了一个移动数据集,该数据集由 24 名参与者在执行两项脑机接口 (BCI) 任务时以四种不同的速度移动时从头皮和耳朵周围的脑电图 (EEG) 以及运动传感器获得。数据由放置在前额、左脚踝和右脚踝的 32 通道头皮脑电图、14 通道耳朵脑电图、4 通道眼电图和 9 通道惯性测量单元收集。记录条件如下:站立、慢走、快走和慢跑,速度分别为 0、0.8、1.6 和 2.0 m/s。对于每种速度,记录了两种不同的 BCI 范式,即事件相关电位和稳态视觉诱发电位。为了评估信号质量,在每种速度下对头皮和耳朵脑电图数据进行了定性和定量验证。我们相信该数据集将有助于在不同移动环境中的 BCI 分析大脑活动并定量评估性能,从而扩大实际 BCI 的使用。
摘要。目的。近年来,代码调制视觉诱发电位 (c-VEP) 已被视为能够提供非侵入式脑机接口 (BCI) 以实现可靠、高速通信的强大控制信号。它们在通信和控制方面的实用性反映在过去十年中相关文章的指数级增长中。本综述的目的是提供文献的全面概述,以了解自 c-VEP BCI 诞生 (1984 年) 至今 (2021 年) 以来的现有研究,并确定有希望的未来研究方向。方法。文献综述是根据系统评价和荟萃分析的首选报告项目 (PRISMA) 指南进行的。在评估期刊手稿、会议、书籍章节和非索引文档的资格后,共纳入 70 项研究。全面分析了基于 c-VEP 的 BCI 的主要特征和设计选择,包括刺激范式、信号处理、建模响应、应用等。主要结果。文献综述表明,最先进的基于 c-VEP 的 BCI 能够通过大量命令、高选择速度甚至无需校准来提供对系统的精确控制。总体而言,在实际设置中缺乏验证,尤其是针对残疾人群体的验证。未来的工作应侧重于开发应用于现实环境的自定进度的基于 c-VEP 的便携式 BCI,以利用 c-VEP 范式的独特优势。异步、无监督训练或代码优化等方面仍需要进一步研究和开发。意义。尽管基于 c-VEP 的 BCI 越来越受欢迎,但据我们所知,这是关于该主题的第一篇文献综述。除了联合讨论该领域的进展之外,还提出了一些未来的研究方向,以促进可靠的即插即用的基于 c-VEP 的 BCI 的开发。
摘要:针对从人类有机体衍生的信号的研究变得越来越流行。在这个领域,基于脑电波的脑部计算机界面扮演了特殊的角色。由于脑电图记录设备和较低的设定价格的缩小尺寸,它们变得越来越受欢迎。不幸的是,此类系统在生成的命令数量方面受到很大的限制。这尤其适用于不是医疗设备的集合。本文提出了一个基于稳态视觉诱发电位(SSVEP),EOG,眼睛跟踪和力反馈系统的混合脑计算机系统。这样的扩展系统消除了许多特定的系统缺点,并提供了更好的结果。本文的第一部分介绍了有关混合脑部计算机系统中应用的方法的信息。根据操作员将机器人的尖端放置在指定位置的能力来测试提出的系统。提出了工业机器人的虚拟模型,该模型用于测试。在现实生活中的工业机器人上重复测试。通过启用和禁用的反馈系统验证了系统的定位精度。在模型和真实对象上进行的测试结果清楚地表明,在由操作员控制时,力反馈提高了机器人尖端的定位精度。此外,模型和现实生活中的工业模型的结果非常相似。在下一阶段,对使用BCI系统进行分类项目的可能性进行了研究。该研究是在模型和真正的机器人上进行的。结果表明,可以使用来自人体的生物信号进行排序。
在这项研究中,提出了信息瓶颈方法作为稳态视觉诱发电位(SSVEP)基于脑部计算机界面(BCI)的优化方法。信息瓶颈是一种信息理论优化方法,可在保留有意义的信息和压缩之间解决问题。它在机器学习中的主要实际应用是表示学习或特征提取。在这项研究中,我们使用信息瓶颈来为BCI找到最佳的分类规则。这是信息瓶颈的新颖应用。此方法特别适合BCIS,因为信息瓶颈优化了BCI传输的信息量。稳态视觉诱发的基于潜在的BCI经常使用非常简单的规则进行分类,例如选择与最大特征值相对应的类。我们称此分类为Arg Max分类器。这种方法不太可能是最佳的,在这项研究中,我们提出了一种专门设计的分类方法,以优化BCIS的性能度量。这种方法比标准机器学习方法具有优势,该方法旨在优化不同的措施。在两个实验的两个公开可用数据集上测试了所提出的算法的性能。我们使用标准功率频谱密度分析(PSDA)和规范相关分析(CCA)在一个数据集上的特征提取方法,并表明当前方法的表现优于该数据集的大多数相关研究。在第二个数据集上,我们使用与任务相关的组件分析(TRCA)方法,并证明所提出的方法在使用少量类时,根据信息传输率,标准ARG最大分类规则优于标准ARG最大分类规则。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。 该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。 它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。据我们所知,这是在基于SSVEP的BCI的背景下使用信息瓶颈的第一次。该方法是独一无二的,从某种意义上说,优化是在分类函数的整个空间中进行的。它有可能提高BCIS的性能,并使校准不同受试者的系统更容易。
摘要 — 稳态视觉诱发电位 (SSVEP) 因其众多优点而成为脑机接口 (BCI) 中最广泛使用的模式之一。然而,由于 SSVEP 中谐波的存在和响应频率范围有限,因此很难在不牺牲接口其他方面或对系统施加额外限制的情况下进一步扩大目标数量。本文介绍了一种用于 SSVEP 的新型多频刺激方法,并研究了其有效增加呈现目标数量的潜力。所提出的刺激方法是通过叠加不同频率的刺激信号获得的,具有尺寸效率高、允许单步目标识别、对可用频率范围没有严格限制、适用于自定步调的 BCI,并且不需要特定的光源。除了刺激频率及其谐波之外,诱发的 SSVEP 波形还包括刺激频率的整数线性组合的频率。使用仅以频率和谐波为参考的典型相关分析 (CCA) 解码从九名受试者收集的 SSVEP 的结果也证明了在基于 SSVEP 的 BCI 中使用这种刺激范式的潜力。
摘要:对于具有肌萎缩性侧面硬化症(ALS)的受试者,言语和非言语通知受到很大的损害。基于视觉诱发电位(SSVEP)的大脑计算机界面(BCIS)是成功的替代增强通信之一,可帮助ALS与他人或设备进行通信。对于实际应用,噪音的影响大大降低了基于SSVEP的BCI的性能。因此,开发基于SSVEP的强大BCI对于帮助受试者与他人或设备进行交流非常重要。在这项研究中,提出了基于噪声抑制的特征提取和深度神经网络,以开发出强大的基于SSVEP的BCI。为了抑制噪音的影响,提出了一种denoising自动编码器来提取降解功能。为了获得实用应用的可接受识别结果,深层神经网络用于发现基于SSVEP的BCI的决策结果。实验结果表明,所提出的方法可以有效地抑制噪声的影响,并且基于SSVEP的BCI的性能可以大大改善。此外,深神经网络的表现优于其他方法。因此,提出的基于SSVEP的BCI对实际应用非常有用。
完全锁定患者的人类计算机互动(HCI)是一项非常艰巨的任务。如今,信息技术(IT)已成为人类生活的重要组成部分。完全锁定状态的患者通常无法通过这些有用的技术进步来促进自己。因此,在残疾后,他们无法在整个生命周期内使用现代的IT小工具和应用。大脑计算机接口(BCI)的进步启用了当一个人由于认知运动障碍而无法以常规方式与设备交互时,可以使用大脑信号操作IT设备。但是,现有的最新应用程序特定的BCI设备相对昂贵。本文介绍了一项研发工作,旨在设计和开发低成本的通用HCI系统,该系统可用于通过大脑信号操作计算机和通用控制面板。该系统基于稳态视觉诱发电位(SSVEP)。在拟议的系统中,通过脑电图(EEG)电极和开源BCI硬件的许多不同频率的不同频率的闪烁灯来响应这些电信号。对健康参与者进行的成功步道表明,严重瘫痪的受试者可以操作计算机或控制面板作为常规HCI设备的替代方案。
目标:我们使用深度卷积神经网络 (DCNN) 对基于稳态视觉诱发电位 (SSVEP) 的单通道脑机接口 (BCI) 中的脑电图 (EEG) 信号进行分类,该接口不需要用户进行校准。方法:EEG 信号被转换为频谱图,并作为输入,使用迁移学习技术训练 DCNN。我们还修改并应用了一种通常用于语音识别的数据增强方法 SpecAugment。此外,为了进行比较,我们使用支持向量机 (SVM) 和滤波器组典型相关分析 (FBCCA) 对 SSVEP 数据集进行了分类。结果:从微调过程中排除评估用户的数据后,我们使用较小的数据长度(0.5 秒)、仅一个电极(Oz)和具有迁移学习、窗口切片(WS)和 SpecAugment 时间掩码的 DCNN,对来自开放数据集的 35 名受试者实现了 82.2% 的平均测试准确率和 0.825 的平均 F1 分数。结论:使用单个电极和较小的数据长度,DCNN 结果优于 SVM 和 FBCCA 性能。迁移学习提供的准确率变化很小,但使训练速度更快。SpecAugment 实现了小幅性能改进,并成功与 WS 结合,获得了更高的准确率。意义:我们提出了一种使用 DCNN 解决 SSVEP 分类问题的新方法。我们还修改了语音识别数据增强技术并将其应用于 BCI 环境中。所提出的方法在数据长度较小且只有一个电极的 BCI 中超越了 FBCCA 和 SVM(更传统的 SSVEP 分类方法)所获得的性能。这种类型的 BCI 可用于开发小型快速系统。