EEE G541 配电设备和配置 [3 2 5] 消费者端配电装置的基本配置。变压器类型、规格、性能、保护和尺寸。电缆和绝缘层的类型、电缆参数、载流量和保护。低压开关设备的额定值及其在选择、开关瞬态和清除时间中的应用。保险丝的属性(以载流量为参考)。仪表、仪器变压器及其应用。配电层的电压控制。电能质量功率因数、频率和谐波含量的基本概念 EEE G542 电力电子转换器 [3 2 5] 转换器的重要性在于它是电源和负载之间的接口。DC-DC 转换器:降压、升压和降压-升压配置。ACDC 转换器:单相和三相二极管和晶闸管转换器。晶闸管转换器中的逆变和线路换向逆变器的应用。 DCAC 转换器:单相和三相开关模式电压源逆变器、不同类型的 PWM 操作、多级 VSI 操作、空间矢量调制技术。AC-AC 转换器:晶闸管供电交流负载、循环换流器。矩阵转换器阵列及其作为 DC-DC 和 DC-AC 转换器的操作。EEE G543 功率器件微电子学与选择 [ 3 0 3] 功率器件封装的热特性、R θJC 和 R θCS 的问题、热流及其对器件温度的影响、散热器设计和选择。双层结行为、漂移区的概念、功率二极管的特性。厚膜 BJT 中的基极操作、稳态特性、开启和关闭时间、多级功率达林顿。四层结行为、晶闸管的两个晶体管模型、四层结器件的动态模型。GTO 晶闸管、四层结器件的关闭机制、当前的技术问题。 MOS 的工作原理和特性、功率 MOSFET 的特性和结构。MOSFET 到 IGBT 的发展、技术优势、特性和动态行为。绝缘栅技术的当前技术问题。矩阵转换器简介。EEE G545 电力电子系统控制与仪表 [3 0 3] 参考电力电子转换器的调节和控制问题。反馈转换器模型:基本转换器动态、快速切换、分段线性模型、离散时间模型。DC-DC 转换器的电压模式和电流模式控制、整流器系统的比较器控制、比例和比例积分控制应用。基于线性化的控制设计:传递函数、补偿和滤波、补偿反馈控制系统。滞后控制基础知识以及在 DC-DC 转换器和逆变器中的应用。一般边界控制:边界附近的行为以及合适边界的选择。模糊控制技术的基本思想和性能问题。电力电子电路传感器、速度传感器和扭矩传感器。EEE G552 固态硬盘 [3 2 5] 驱动系统简介:要求、组件和基准;电机理论回顾;电机的电力电子控制:要求和操作问题;感应电机的静态速度控制:交流电源控制器、滑差能量回收、VSI 和 CSI 控制的感应电机;同步电机和相关机器的速度控制;直流电机速度控制问题:整流器和斩波控制器;先进的感应电机驱动控制:矢量控制,
本文提出了独立的混合动力系统(HP)的最佳控制策略,以向孤立的站点提供可持续和最佳的能量,并具有提高的电能质量。A topology of Isolated Hybrid Power System (IHPS) is proposed, consists of: a Photovoltaic System (PVS), a Wind Energy Conversion System (WECS), electronic power devices controlled to maximize energy production from renewable sources and to maintain the constant DC-link voltage, a Battery Energy Storage System (BESS), Diesel Generator (DG), and a Pulse Width Modulation (PWM)电压源逆变器(VSI)位于负载端端。此外,在这项工作中,已经提出了一种新颖的控制策略,以最大程度地发挥PVS的功率。基于扰动和观察(P&O)算法和模糊PI控制器(FPIC)之间的组合,这种提出的策略表现出色,尤其是与经典算法P&O相比的动态状态。已详细阐述了一种监督控制算法,以管理混合系统设备之间的能量流,以确保最少使用电池和DG使用的负载持续供应。在MATLAB/SIMULINK环境中开发的仿真结果用于显示拟议控制策略在功率优化和能量管理方面的效率和性能。
全球能源需求的很大一部分可能由大量可再生能源满足。另一方面,可再生能源的产出由于其来源的动态特性而变化。将这些可变电源整合到现有电网中,对世界各地的电力系统运营商来说都是困难的。可再生能源系统的基本问题是,由于可再生能源的随机性,电力产量在不同时期都有所不同。最近对可再生能源技术的研究和开发可以确保岛屿的长期电力供应。另一方面,可再生能源受到其不可预测性和严重依赖天气条件的限制。为了弥补这个缺点,必须将几种可再生能源和转换器结合起来。为了平衡发电量和负载功率,提出了一种用于独立应用的混合可再生能源发电。太阳能发电厂模型由串联的 170 W 光伏 (PV) 板组成,能量转换使用最大功率点跟踪 (MPPT) 算法完成,该算法调节降压-升压转换器调制。转换器控制步骤中使用的 MPPT 方法基于扰动和观察 (P&O),并通过 PI 控制器增强。双向降压-升压 DC-DC 转换器 (BBDC) 用于保持 DC 链路电压稳定。这还将额外的混合能量存储在大型电池中并分配给系统负载;然后出现混合动力短缺。负载电流功率根据频率进行调节,并使用三个矢量控制技术电压源逆变器 (VSI) 来实现。结果展示了该组织的混合性能。
摘要:本文提出了一种有关完全分布的AC/DC微电网的新型合作控制技术。基于逆变器的分布式生成具有两种类型,即当前源逆变器(CSI),也称为PQ逆变器,电压源逆变器(VSI)。两种逆变器形式具有两层配位机制。本文提出了一种用于调节逆变器内部电流的数字比例共振(PR)控制器的设计方法。逆变器将提高微电网的电压质量,同时将总线的平均电压保持在相同的所需水平。关于谐振和比例增益以及数字共振路径系数的计算有全面的细节。本文包括数字PR控制器设计及其在频域中的分析。分析基于W域。本文的主要贡献是提出的方法,该方法不仅侧重于瞬态响应,而且还改善了平滑电压的稳态响应。此外,所有逆变器都有效地参与了以提高微电网对更好的电源管理的能力。建议的合作控制技术用于具有完全分布的通信的IEEE 14总线系统。令人信服的结果表明,建议的控制技术是调节微电网电压以获得更均匀稳定的电压曲线的有效手段。微电网包含分布式资源,并用作分析与智能电网相关的功率流和质量指标的主要元素。最后,使用数值模拟观测来证实推荐的算法。
(3) 在起落架和襟翼处于任何位置时,以 1.2 VSI 的垂直、稳定滑行,并且在功率条件下不超过最大连续功率的 50%,当滑行角增加到适合该类型飞机的最大值时,副翼和方向舵的控制运动和控制力必须稳定增加(但不一定按恒定比例增加)。在较大的滑行角下,直到使用全方向舵或副翼控制或获得 JAR-VLA 143 中包含的控制力极限为止,方向舵踏板力不得反转。滑行必须有足够的倾斜度以保持恒定的航向。快速进入最大滑行或从最大滑行恢复不得导致失控的飞行特性。 (b) 双控制(或简化控制)飞机。双控飞机的稳定性要求如下:飞机的方向稳定性必须通过以下方式来证明:在每种配置下,飞机都可以快速地从一个方向的 45 英寸倾斜度滑向相反方向的 4 5 度倾斜度,而不会出现危险的滑行特性。飞机的横向稳定性必须通过以下方式来证明:当放弃控制两分钟时,飞机不会呈现危险的姿态或速度。这必须在适度平稳的空气中进行,飞机以 0-9 VH 或 Vc(取较低者)进行直线平飞,襟翼和起落架收起,重心后移。
在这项研究中,研究了叶黄素和富马酸亚铁对黄河鲤鱼(Cyprinus carpio)的影响,旨在评估皮肤色素沉着,肠道消化酶,肠道微生物多样性和生长性能。设计了三种实验饮食,包括对照组,一组150mg/kg叶黄素)以及叶黄素和富马酸铁蛋白酶混合物(150mg/kg叶黄素和100mg/kg富马酸铁酸铁酸铁酸酯)。用实验饮食喂食42天的鲤鱼(n = 135; 25.0±2.0g)。结果表明,与对照组相比,与对照组(P <0.05相比,与蓝色(b*),颜色差异(δe)和Chroma(δe)和乳头较高的值相比,蛋白质的无关指数(ISI)和内脏指数(ISI)和内脏指数(VSI)增加,伴随着蓝色(B*),色差(δe)和Chroma(CH*)的较高价值(与对照组相比(P <0.05)相比,身体颜色的显着变化。同时,在混合物组中观察到淀粉酶,脂肪酶和胰蛋白酶的较高活性(p <0.05)。高通量测序和维恩图表明,叶黄酸或亚铁富马酸盐对鲤鱼的肠道微生物群具有明显的影响。与对照组相比,与混合物组相比,用混合物组的鲤鱼中的静脉细菌和黄杆菌的丰度显着增加。总而言之,在饲料中添加叶黄素和富马酸亚铁可以改变黄河鲤鱼的皮肤色素沉着和肠道微生物组成,从而增强鱼类的着色效果和消化功能。这些发现为优化饲料配方和水产养殖管理提供了宝贵的见解,这可以有助于提高黄河鲤鱼的质量和农业效率。
塑料的广泛使用导致微塑料遍布地球( Thompson 等人,2004 年;Wang 等人,2019 年)。这些微小颗粒已在南极海冰、栖息在最深海沟的海洋动物肠道以及世界各地的饮用水中检测到。微生物是地球上所有生命的基础,并通过其各种活动在维持生命方面发挥着重要作用( Liu 等人,2021 年)。研究微塑料与微生物之间的相互作用具有重要意义,原因有很多,例如涵盖环境、生态、人类健康和社会经济层面( Wang 等人,2021 年)。例如,鉴定能够降解微塑料的微生物可以制定合理的修复策略,为减轻塑料污染提供潜在的解决方案。尽管过去几十年来在理解不同环境中微塑料和微生物之间的关系方面取得了重大进展,但由于其固有的复杂性,我们对这些相互作用的理解仍然有限。本期虚拟特刊(VSI)中的五篇论文主要关注两个主题:微塑料的微生物降解以及微塑料与病毒之间的相互作用。第一个主题涉及识别能够有效降解微塑料的细菌和微生物。在环境中,微塑料很容易形成富含微生物的塑料球,这意味着微生物介导的塑料降解可能是解决塑料污染的可行方法。研究这一问题的常用方法是使用富集培养物来观察微生物群落的动态变化并识别能够降解微塑料的微生物。
本科生研究员(目前 17 名;共 35 名)Vedant Raval(2024–)、Emily Wang(2024–)、Richard Peng(2024–)、Christina Wang(2024–)、Matthew Salaway(2024–)、Ryan Wang(2024–)、Lorena Yan(2024–)、Qiutong Yi(2024–)、David Bai(2024–;CURVE 研究员)、Keyu He(2023–)、Zain Merchant(2023–;CURVE 研究员)、Nidhi Munikote(2023–;CURVE 研究员)、Miaosen Chai(2023–;CURVE 研究员)、Emmanuel Ezirim(2023–;VSI 研究员、CURVE 研究员)、Rohan Gupta(2023–;教务长研究员)、Abhinav Gupta(2023–;教务长研究员、URAP)、Leslie Moreno (2022–; CURVE 研究员)、曾子安 (2024; SURE 研究员)、Jaiv Doshi (2023)、钱玉玺 (2023)、Cicily Chung (2023; CURVE 研究员)、Riley Ashford (2023-24; SURE 研究员、CURVE 研究员)、Gwen Bradforth (2023-24; CURVE 研究员)、Riley Carlin (2023; → 哥伦比亚统计博士项目), Furong Jia (2022–23; CURVE Fellow; → 杜克大学计算机科学博士项目), Allen Chang (2022–23; → NSFGRFP; 宾夕法尼亚大学计算机科学博士项目), Aarav Monga (2022–23), Elle Szabo (2022–23), Chu Fang (2022–23; URAP), Julie Kim (2022–23; CURVE 研究员)、Junu Song(2022 年;CURVE 研究员)、Minh Ngoc Vu(2022 年;NSF Robotics REU)、Kush Bhagat(2022 年;SURE 研究员)、Chidera Iwudyke(2022 年;SURE 研究员)、Tanis Sarbatananda(2022 年;LACC ASSURE 研究员)
The new and improved patented Cell ActivePure® destroys 99% of all contaminants on the surface and in the air uses the exclusive combination of technologies, including a generator of positive, negative and RF ions, filters better than HEPA filters, activated charcoal filters and ownershippure® technology reducing airborne and air.过敏干净的表面和空气,清除挥发性有机化合物,烟雾和气味刷新空气并消除无臭氧的气味不需要便携式,不需要安装仅使用43瓦电力...小于常规灯泡!工作方式ActivePure®技术使用光波和催化过程,用于生产超氧化物和氢 - 过氧化物,破坏了空气中和表面上的污染物设备内部使用相同的氧化和电离特性的UVC光强度高强度。对永久封闭场所的保护ActivePure®技术已在独立实验室中进行了测试。已被证明有效地在表面和空气独特的特性上对抗细菌,病毒,霉菌和真菌积极,负和射频产生,比HEPA过滤器更好的过滤器和激活的木炭过滤器Fundedfurn funded fund of Fund Speed of Fastslcd屏幕LCD屏幕lcd screate维护维护维护•维护。电缆目标买家的通用电源医疗保健机构,疗养院,学校或任何其他机构,需要在室内质量,清洁空气患有过敏和哮喘的人具有敏感免疫系统的人