我们描述了一种新方法,用于从单个未校准图像中自动检测与建筑物立面相关的消失点和组线。准确的建筑物消失点检测对于建筑物立面校正和 3D 场景重建非常重要。挑战来自于令人困惑的场景杂乱、遮挡、不寻常的建筑形状和非曼哈顿街道布局。建筑物通常具有许多直线特征,例如窗户和门开口,以及它们的整体轮廓。我们利用这些特征并提出了一种强大的线分组技术。该方法在来自 Zubud-Zurich 建筑数据库的图像上进行了评估。实验表明,所提出的方法适用于不同的建筑结构和图像条件,并能过滤掉“非建筑物”消失点(例如从道路边界检测到的消失方向)。
推荐引用 推荐引用 Scherer, JC (1985). Lyman: The Vanishing Race and Other Illusions: Photographs of Indians by Edward S. Curtis. 11 (3), 78-85. 取自 https://repository.upenn.edu/svc/vol11/iss3/6
单点透视:当图像平面平行于两个世界坐标轴时,与该图像平面切割的轴平行的线将具有在单个消失点相遇的图像。线平行于其他两个轴线不会形成消失点,因为它们是平行于图像平面的。
最近,为提高深度神经网络的可解释性,人们使用显著性来表征输入特征对模型预测的重要性。在循环神经网络 (RNN) 上使用基于显著性的方法进行可解释性研究主要针对语言任务,而它们对时间序列数据的适用性尚不明确。在本文中,我们分析了基于显著性的 RNN 方法,包括经典和门控单元架构。我们表明,RNN 显著性会随着时间的推移而消失,导致对显著特征的检测仅偏向于后续时间步骤,因此无法可靠地检测任意时间间隔内的重要特征。为了解决这个显著性消失问题,我们提出了一种新颖的 RNN 单元结构(输入单元注意力†),它可以扩展任何 RNN 单元架构。在每个时间步骤,输入单元注意力使用固定大小的矩阵嵌入,而不是只查看当前输入向量,矩阵的每一行都关注来自当前或之前时间步骤的不同输入。使用合成数据,我们表明,输入单元注意 RNN 生成的显着性图能够忠实地检测重要特征,无论它们在时间上发生如何。我们还将输入单元注意 RNN 应用于神经科学任务,该任务分析执行各种任务的人类受试者的功能性磁共振成像 (fMRI) 数据。在这种情况下,我们使用显着性来表征大脑区域(输入特征),这些区域的活动对于区分任务很重要。我们表明,标准 RNN 架构只能在 fMRI 数据的最后几个时间步骤中检测重要的大脑区域,而输入单元注意模型能够跨时间检测重要的大脑区域活动,而不会在后面的时间步骤中产生偏差。
白质消失 (VWM) 是一种由 eIF2B 亚基隐性变异引起的白质营养不良。目前,尚无治愈性治疗方法,患者常常英年早逝。由于其单基因特性,VWM 是开发 CRISPR/Cas9 介导的基因治疗的有希望的候选对象。在这里,我们在 VWM 小鼠中测试了一种双 AAV 方法,该方法编码 CRISPR/Cas9 和 DNA 供体模板以纠正 Eif2b5 中的致病变异。我们进行了测序分析以评估基因纠正率,并检查了对 VWM 表型(包括运动行为)的影响。序列分析表明,在目标基因座处超过 90% 的 CRISPR/Cas9 诱导的编辑是插入或缺失 (indel) 突变,而不是通过同源定向修复从 DNA 供体模板进行的精确校正。大约一半的 CRISPR/Cas9 治疗动物过早死亡。 VWM 小鼠在 7 个月大时运动技能、体重或神经系统评分均未改善,而 CRISPR/Cas9 处理的对照组则表现出诱导的 VWM 表型。总之,CRISPR/Cas9 在 Eif2b5 基因座处诱导的 DNA 双链断裂 (DSB) 未导致 VWM 变异的充分校正。此外,Eif2b5 中的插入/缺失形成会加剧 VWM 表型。因此,DSB 独立的策略(如碱基编辑或主要编辑)可能更适合 VWM 校正。
免疫性胆管破坏是肝移植和造血干细胞移植后胆管消失综合征 (VBDS) 的一种致病性疾病。由于胆汁酸受体鞘氨醇 1-磷酸受体 2 (S1PR2) 在将骨髓来源的单核细胞/巨噬细胞募集到胆汁淤积性肝损伤部位方面起着关键作用,因此使用培养的巨噬细胞和患者组织检查了 S1PR2 的表达。胆小管破坏先于肝内胆管减少;因此,我们使用形成明显胆小管状网络的三维肝细胞培养模型,重点研究肝细胞 S1PR2 和下游 RhoA/Rho 激酶 1 (ROCK1) 信号通路和胆小管改变。多重免疫组织化学显示,与正常肝脏相比,由于移植物抗宿主病和肝移植后排斥反应导致胆管减少的肝组织中 S1PR2 + CD45 + CD68 + FCN1 + 炎性巨噬细胞和 S1PR2 + CD45 + CD68 + MARCO + 库普弗细胞的数量增加。抑制 S1PR2 后,巨噬细胞表达的促炎细胞因子(包括 MCP1)减少。牛磺胆酸和 S1P2 激动剂诱导肝细胞 S1PR2 并降低 RhoA/ROCK1 表达,导致胆小管扩张。抑制 S1PR2 可逆转对 RhoA/ROCK1 表达的影响,从而通过肌球蛋白轻链 2 (MLC2) 磷酸化维持胆小管。巨噬细胞上的 S1PR2 和肝细胞上的 S1PR2 的激活可能会通过 MLC2 磷酸化破坏受 RhoA/ROCK1 调控的 VBDS 中的胆汁小管动力学。
本文是关于微/宏观鸿沟的,或更准确地说。它声称这种鸿沟是一种本体论的区别,被过时,是一种认识论的分歧,而最糟糕的是,它误导了一种政治替代方案。微观/宏观鸿沟是对社会治理形式的一个体面的学术隐喻,这种形式是早期现代性的特征,即受国家政府管理的公共领域与由帕特家族统治的私人领域的分离。然而,由于我所说的“计算互动主义”的发展,这种分离已经越来越过时了:一种日益普遍的社交状况类型,其中人类之间的相互作用受到高级数字计算技术的介导,监测或以其他方式影响。
1巴黎 - 萨克莱大学,CEA,CNRS,规格,91191 GIF-SUR-YVETTE CEDEX,法国2冰3,法国91400 Orsay,法国3号Paris-saclays 3UniversitéParis-Saclay,CNR,CNRS,CNRS,De Nanosciences Center De Nanosciences et de nanotechnologies(C2N)在高垂直磁场和低温下,石墨烯在电荷中立点处形成绝缘状态。该状态被称为NU = 0,是由于电子相互作用之间的相互作用以及由N = 0 Landau级别形成的平坦带中的四倍自旋和山谷变性。确定NU = 0的基态,包括其自旋和山谷极化,在近二十年中一直是一种理论和实验性的事业。在这里,我们提出了探测单层石墨烯在nu = 0的大量热传输特性的实验,该特性直接探测其基态和集体激发。,我们观察到与预期基态相矛盾的散装热传输,即使在非常低的温度下,也被预测具有有限的导热电导。我们的结果强调了需要进一步研究NU = 0的性质。Delagrange等人在自然物理学上进行审查
量子速度极限 (QSL) 何时才是真正的量子?虽然 QSL 时间的消失通常表示经典行为的出现,但目前仍未完全了解经典性的哪些方面是这种动力学特征的起源。在这里,我们表明 QSL 时间的消失(或量子速度的发散)可以追溯到量子可观测量不确定性的降低,因此可以理解为这些特定可观测量出现经典性的结果。我们通过为经历一般高斯动力学的连续变量量子系统开发 QSL 形式来说明这种机制。对于这些系统,我们表明导致 QSL 时间消失的三个典型场景,即大压缩、小有效普朗克常数和大粒子数,可以从根本上相互联系。相反,通过研究开放量子系统和混合态的动力学,我们表明由于添加经典噪声而导致状态不相干混合而出现的经典性通常会增加 QSL 时间。