摘要:大气总水蒸气含量 (TWVC) 会影响气候变化、天气模式和无线电信号传播。全球导航卫星系统 (GNSS) 等最新技术用于测量 TWVC,但精度、时间分辨率或空间覆盖范围均有所降低。本研究证明了使用扩频 (SS) 无线电信号和低地球轨道 (LEO) 卫星上的软件定义无线电 (SDR) 技术预测、绘制和测量 TWVC 的可行性。提出了一种来自小型卫星星座的卫星间链路 (ISL) 通信网络,以实现 TWVC 的三维 (3D) 映射。然而,LEO 卫星的 TWVC 计算包含电离层总电子含量 (TEC) 的贡献。TWVC 和 TEC 贡献是根据信号传播时间延迟和卫星在轨道上的位置确定的。由于 TEC 与 TWVC 不同,依赖于频率,因此已经实施了频率重构算法来区分 TWVC。这项研究的新颖之处在于使用时间戳来推断时间延迟、从星座设置中独特地推导 TWVC、使用算法实时远程调谐频率以及使用 SDR 进行 ISL 演示。这项任务可能有助于大气科学,测量结果可以纳入全球大气数据库,用于气候和天气预报模型。
Niobate锂是其具有挑战性的功能性能的特殊材料,可以适合各种应用。然而,到目前为止,在蓝宝石底物上生长的高品质200毫米li x nb 1-x o 3薄片迄今为止从未报道过这限制了这些潜在应用。本文报告了蓝宝石(001)底物在组合构造中通过化学梁蒸气沉积在蓝宝石(001)底物上对高质量的薄膜沉积的有效优化。使用此技术,LI/NB的流量比可以从单个晶圆上调整≈0.25至≈2.45。在膜的胶片(不同阳离子比)的不同区域进行了各种互补特征(通过不同的效果,显微镜和光谱技术),以研究阳离子化写计数器对纤维属性的影响。接近阳离子化学计量学(Linbo 3),外延纤维具有高质量(尽管有两个平面域,但低镶嵌性为0.04°,低表面粗糙度,折射率和带隙接近散装值)。偏离化学计量条件,检测到次级相(富含NB的流动比的Linb 3 O 8,Li 3 NBO 4具有部分非晶化的Li-foW流比)。linbo 3薄膜对于数据通信中的各种关键应用程序都具有很高的兴趣。
解释无机成分深度分布以了解气相渗透过程中的限速步骤 Shuaib A. Balogun 1、Yi Ren 2、Ryan P. Lively 2 和 Mark D. Losego 1,* 1 佐治亚理工学院材料科学与工程学院,美国佐治亚州亚特兰大 2 佐治亚理工学院化学与生物分子工程学院,美国佐治亚州亚特兰大 *电子邮件:losego@gatech.edu 摘要 气相渗透 (VPI) 是一种聚合后改性技术,它将无机物注入聚合物中以创建具有新性能的有机-无机杂化材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究的目的是更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 杂化材料的工艺动力学。为了获得深刻见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了材料从聚合物转变为混合物时产生的 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍)如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。 TMA 似乎可以在几个小时内完全渗透这些 200 nm 的 PMMA 薄膜,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也未完全饱和。90 °C 下的渗透速度非常慢,无法得出有关机理的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅需几分钟即可渗透整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀负载的偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的限速过程机制。
由于公众对可持续性的推动,纸电子产品的兴起已经加速。电子废物。在本报告中,可以证明导电聚合物聚(3,4-乙二醇氧噻吩)(PEDOT),多吡咯和聚噻吩可以通过丝网印刷与纸张底物上的蒸气相聚合结合并进一步掺入功能性电子成分来合成。高模式分辨率(100μm),PEDOT显示出令人印象深刻的板电阻值。PEDOT作为导电电路并在全印刷的电致色素显示器中作为导电电路。导电聚合物电路允许发射功能发光二极管,而电致色素显示器可与使用PEDOT在塑料底物上使用PEDOT相当。
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
气相渗透 (VPI) 是一种聚合后改性技术,可将无机物注入聚合物中以产生具有新特性的有机-无机混合材料。关于 VPI 工艺背后的化学动力学,我们仍有许多未解之谜。本研究旨在更好地了解控制三甲基铝 (TMA) 和 TiCl 4 渗透到 PMMA 中形成无机-PMMA 混合材料的工艺动力学。为了获得深入见解,本文首先研究了根据最近提出的 VPI 反应扩散模型计算出的无机物时空浓度的预测结果。该模型深入了解了 Damköhler 数(反应与扩散速率)和非 Fickian 扩散过程(阻碍),这些过程是由材料从聚合物转变为混合材料而产生的,如何影响无机浓度深度剖面随时间的变化。随后,收集了 90 °C 和 135 °C 下 TMA 和 TiCl 4 渗透 PMMA 薄膜的实验性 XPS 深度剖面。将这些深度剖面在不同渗透时间下的功能行为与各种计算预测进行定性比较,并得出关于每个过程机制的结论。对于本文研究的薄膜厚度(200 nm),TMA 渗透到 PMMA 中似乎从低温(90 °C)下的扩散限制过程转变为高温(135 °C)下的反应限制过程。虽然 TMA 似乎在几个小时内完全渗透到这些 200 nm 的 PMMA 薄膜中,但 TiCl 4 渗透到 PMMA 中的速度要慢得多,即使在前体暴露 2 天后也不会完全饱和。在 90 °C 下的渗透速度非常慢,以至于无法得出关于机制的明确结论;然而,在 135 °C 下,TiCl 4 渗透到 PMMA 中显然是一个反应限制过程,TiCl 4 仅在几分钟内渗透到整个厚度(低浓度),但无机负载在 2 天内以均匀的方式持续增加。近表面与反应限制过程预期的均匀加载偏差也表明 TiCl 4 渗透到 PMMA 中的扩散阻碍很大。这些结果展示了一种新的非原位分析方法,用于研究气相渗透的速率限制过程机制。
尽管水蒸气吸附于固体自由表面会引起接触角的变化,但对水蒸气影响的研究却很少。1942年Boyd和Livingston[2]以及2007年Ward和Wu[3]指出,水蒸气在自由固体表面的吸附应该会改变接触角,因为γSV会降低。1988年,Yekta-Fard和Ponter[4]测量了当水滴在聚四氟乙烯表面上暴露于环己烷、癸烷或十一烷蒸气时,水的接触角没有变化。几位作者[5]研究了由于吸附有机蒸气引起的水的表面张力的变化。在许多自然现象和工业应用中,水滴在表面的滑动都很重要,例如涂层[6]、能量转换[7]和水收集[8],或者雨中的玻璃或挡风玻璃。在这些情况下,需要区分前进接触角θ a 和后退接触角θ r 。两者之间的差异称为接触角滞后。它可能是由表面异质性、粗糙度或适应性引起的。[9] 接触角滞后很重要,因为它决定了固着液滴的摩擦力:F=kγLVw(cosθr−cosθa)。[2,10] 其中,k≈1 是形状因子,w 是液滴与固体表面接触面积的宽度。尽管取得了令人瞩目的发展,但液滴在表面上的移动机制还远未被理解或控制。在这方面,涂有聚二甲基硅氧烷(PDMS)刷的表面由于其低接触角滞后性而引起了极大兴趣。 [11] 在最近的一篇论文中,我们证明了当系统暴露于甲苯蒸汽时,PDMS 涂层表面上水滴的接触角滞后会进一步减小。[12] 我们通过蒸汽被吸附在 PDMS 层中的润滑作用解释了这种影响。原子力显微镜检测到甲苯蒸汽层厚度增加,支持了这一假设。聚合物刷吸附溶剂蒸汽确实是已知的。[13]
摘要:密集的均匀纳米复合材料Tisicn涂层,其厚度高达15微米,硬度为42 GPa,通过在AR + C 2 H 2 + N 2 -GAS混合物中与Hexamethyld -iSlyld -iSlyld -iSlyld -iSILASEANE(HMDS)混合物中的空心阴极排放中的反应性钛蒸发方法获得了高达42 GPA的硬度。对等离子体组成的分析表明,该方法允许气体混合物所有成分的激活程度的广泛变化,可提供高(高达20 mA/cm 2)的离子电流密度。可以通过改变蒸气– GAS混合物的压力,组成和激活程度,可以广泛改变该方法获得的化学成分,微结构,沉积速率和性能。将C 2 H 2,N 2,HMD和排放电流的频率增加导致涂层形成速率的增加。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。中,从微硬度的角度获得最佳涂料是在低排放电流下获得的,并且相对较低的含量为c 2 H 2(1 SCCM)和HMD(0.3 g/h)(0.3 g/h),超过了,这会导致质量和非质量的质量的降低,从而导致降低其质量的降低,这可能会导致其质量的降低,而质量的质量差异会导致质量的降低。涂料。
图 1. 上图显示了方法管理器中的方法面板。它以数字和图形方式显示了 25 °C 下水吸附实验的当前方法。正在进行的实验的活动阶段以绿色突出显示。图 2 和图 3(下图)是该方法生成的典型数据。
在 IV 族单硫族化物中,层状 GeSe 因其各向异性、1.3 eV 直接带隙、铁电性、高迁移率和出色的环境稳定性而备受关注。电子、光电子和光伏应用依赖于合成方法的开发,这些方法可以产生大量具有可控尺寸和厚度的晶体薄片。在这里,我们展示了在低热预算下,在不同基底上通过金催化剂通过气相-液相-固相工艺生长单晶 GeSe 纳米带。纳米带结晶为层状结构,带轴沿着范德华层的扶手椅方向。纳米带的形态由催化剂驱动的快速纵向生长决定,同时通过边缘特定结合到基面而进行横向扩展。这种组合生长机制能够实现温度控制的纳米带,其典型宽度高达 30 μm,长度超过 100 μm,同时保持厚度低于 50 nm。单个 GeSe 纳米带的纳米级阴极发光光谱表明,在室温下具有强烈的温度依赖性带边发射,其基本带隙和温度系数分别为 E g (0) = 1.29 eV 和 α = 3.0×10 -4 eV/K,证明了高质量 GeSe 和低浓度的非辐射复合中心,有望用于包括光发射器、光电探测器和太阳能电池在内的光电应用。