业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
业界普遍的做法是,通过根据 RTCA- DO160 或 MIL-STD810 等标准频谱对系统进行鉴定,以证明设计符合振动要求 (CS-25.301、CS-25.305 和 CS- 25.1309)。这种方法适用于非气动结构,但当机械系统嵌入高速气流中时,流体结构耦合效应引起的物理变化可能会使振动频谱不保守:正常运行期间结构的实际响应可能高于振动台上获得的响应。本研究展示了一个可以发现此事件的实际工程应用,并证实了流体结构耦合对系统结构响应的影响。使用加速度计监测 APU 进气系统的飞行和风洞测试振动,并与在振动台上进行的地面鉴定测试和 FEM(有限元模型)随机振动分析进行比较,结果表明实际激励高于地面测试频谱引起的响应。
• 设计和制作一个模型耳朵 • 演示耳朵的工作原理,展示耳朵对刺激的敏感程度 • 提高对声音和噪音对耳朵的影响的认识 词汇:耳蜗、耳朵、耳道、耳廓、刺激、振动 材料: • 铝箔馅饼盘 • 卡片纸或建筑纸 • 吸管(最好是可弯曲的吸管) • 乒乓球或气球 • 水容器 • 胶带 • 活动和耳朵模型的图画(供参考) 背景信息:我们的耳朵是一个声音接收器或运动传感器,它接收声音振动并帮助将信息传递给大脑,以便人类听到。耳朵由三部分组成——外耳(耳廓)、耳道和内耳(耳蜗)。一旦被外耳捕捉到,振动就会通过耳道传播并引起耳膜的运动。声音被中耳放大并传输到内耳或耳蜗,从而将声音转化为
摘要我们提出了对戈斯 - 汉宁转移(GHS)的理论研究,该示波器和光学振动模式反映并从半导体薄膜的表面反映和传播,这些薄膜夹在两个半无限培养基之间。考虑到纵向模式和横向模式之间的耦合,我们的研究集中于入射角对GHS的影响。对于声学振动,我们的发现表明,GHS的幅度可能比薄膜的厚度大7倍,并且比入射波长大20倍。此外,还表明,GHS的这种显着扩增突出了入射角的强大影响和所涉及的模式的频率。在光学振动的情况下,我们观察到更明显的GHS值,超过入射波长的30倍。这证明了GHS在声学系统中的潜力,这为在声学设备设计中应用开辟了可能性。
在Terahertz(THZ)频率范围内产生单色电磁辐射,数十年来一直是一项艰巨的任务。在此,证明了介电材料KY(MOO 4)2中光音子单色子THZ辐射的发射。ky的分层晶体结构(MOO 4)2导致红外剪切晶格振动的能量低于3.7 MeV,对应于低于900 GHz的频率,而基于固体的单色辐射源很少见。直接通过5 ps长宽带Thz脉冲激发,ky中的红外活性光学振动(MOO 4)2重新发射窄带子Thz辐射作为数十无picseconds的时变偶极子,对于振荡器而言,频率低于1 THz,这对于振荡器而言异常长。如此长的连贯发射允许检测超过50个辐射的辐射,频率为568和860 GHz。与使用材料的化学稳定性相同的较长衰减时间表明,THZ技术中的各种可能应用。
C. 证明铁路持续有效运营产生的噪音、振动或光线不会对未来居住者的舒适度产生不利影响。提案应考虑有效的景观美化如何有助于实现这一点,同时在铁路和任何建筑物之间保留足够的通行权,以便进行维护和维修。
当相对的浅砖(金属表面上的微观投影)破坏了竞争者油的油膜时,会发生表面发起的疲劳,这会导致轴承表面快速磨损并变得更粗糙。振动稳步增加,因为这些粗糙的表面不再被油的薄膜完全分离,从而导致金属对金属接触的增加。Synerlec添加剂技术的艰难胶片强度不仅使Asberities违反石油膜更加困难,而且实际上它会使已经损坏的轴承表面平滑。,皇家紫色的Synerlec添加剂技术并没有变得更粗糙,而是微调这些令人垂涎,形成了更光滑的表面,然后很容易被皇家紫色的艰难石油胶片隔开。受损的轴承经历高振动的轴承通常可以通过使用Synerlec添加剂技术更换为皇家紫色的油,从而大大延长时间。(请参阅技术附录中的第34-35页。)
最终,他们将研究重点转移到病毒上,发现只要设置适当的参数,他们就能使用一种称为 BioSonics 光谱的技术检测病毒发出的振动。这种声音不仅太微弱,人耳无法听到,而且频率太高,是人类听力的 100 万倍。
结构 几何理想化 ................................. 3 建模功能 ................................. 4 材料 .............................................. 4 复合材料 ................................. 5 结构求解器功能 ........................ 5 拓扑优化 ................................. 6 多重分析 .............................................. 7 振动 .............................................. 7 非线性瞬态动力学 ........................ 8 显式动力学 ................................ 8 耐久性 .............................................. 9 波浪流体动力学 ................................ 9 热 .............................................. 10 附加物理场 ................................ 10 优化 .............................................. 11 杂项和可用性 ................................ 11 HPC - 结构 ................................ 12
石墨烯和相关的二维(2D)材料相关的机械,电子,光学和语音性能。因此,对于将其基本激发(激发子,声子)与宏观机械模式搭配的混合系统来说,2D材料是有希望的。与较大的架构相比,这些内置系统可能会产生增强的应变介导的耦合,例如,包括一个与纳米机械谐振器耦合的单个量子发射极。在这里,使用微拉曼光谱法对原始的单层石墨烯鼓上的鼓,我们证明了石墨烯的宏观膨胀振动诱导动力学光学声子软化。这种软化是动态诱导的拉伸应变的明确填充物,在强的非线性驾驶下达到了≈4×10-4的值。这种非线性增强的应变超过了具有相同根平方(RMS)幅度的谐波振动预测的值,多个数量级。我们的工作对2D材料和相关异质结构中光 - 物质相互作用的动态应变工程和动态应变介导的控制有望。