编程语言:VERILOG、VHDL 逻辑模拟器(前端):XILINX VIVADO 电路模拟器(后端):VIRTUOSO WITH SPECTRE(Cadence)CUSTOM COMPILOR HSPICE(Synopsys)PYXIS WITH ELDO(Mentor Graphics)布局分析仪(后端):使用 ASSURA 的 DRC/LVS 和使用 QUANTUS 的 RCX(Cadence)使用 IC VALIDATOR 和 HERCULES 的 DRC/LVS/RCX(Synopsys)使用 CALIBRE 的 DRC/LVS/RCX(Mentor Graphics)专业服务:期刊审稿人:INTEGRATION、THE VLSI JOURNAL、ELSEVIER IEEE TRANSACTIONS ON CAD(TCAD)IEEE TRANSACTIONS ON NANOTECHNOLOGY IEEE CONSUMER ELECTRONICS MAGAZINE MICROELECTRONICS JOURNAL, ELSEVIER JCSC、世界科学国际。 J. ELECTRONICS,TAYLOR & FRANCIS 印度纯物理与应用物理杂志 低功耗电子杂志,ASP JMSTE,欧亚半导体科学与技术,IOP 应用计算与信息学,ELSEVIER 会议组织者/审阅者: IFSA MicDAT – 2018,西班牙巴塞罗那 IEEE ICEECCOT-2018,印度迈苏鲁 IEEE INDICON – 2018,印度 IIT ROORKEE IEEE ICCE – 2018,美国拉斯维加斯 IEEE iNIS/iSES-2016/17/18,印度海得拉巴 IEEE CICT-2017,印度瓜廖尔 IEEE IESC – 2017,印度西隆 IEEE ICEECCOT-2017,印度迈苏鲁 IEEE ICECS – 2016,法国摩纳哥 IEEE MWSCAS-2016,阿联酋阿布扎比 IEEE RAECS-2015,印度昌迪加尔 SPRINGER IC3T-2015,海得拉巴 IEEE ICIIC-2015,印度浦那 IEEE ICACCE-2015,印度德拉敦 会员资格:
摘要:当前射频标识(RFID)标准之间的不相容性导致需要通用和无线保真度(Wi-Fi)兼容物联网应用程序(IoT)应用程序的RFID。这样的通用RFID需要单极双掷开关(SPDT)开关和低噪声放大器(LNA)才能通过天线指导和扩增接收到的原始信号。SPDT患有低隔离,高插入损失和低功率处理能力,而LNA遭受较小的增益,笨重的模具面积,质量较小(Q)因子,有限的调整灵活性等。由于当前一代设备中的被动电感器使用情况。在这项研究中,提出了基于互补的金属氧化物半导体(CMOS)的无电感SPDT和LNA设计。SPDT采用了一系列拓扑以及平行的共振电路和电阻体漂浮,以实现改进的插入损失和隔离性能,而LNA设计则以Gyrator概念实现,其中频率选择性储罐电路与伴随的活跃电感器形成了伴随的频率,并由伴随的激活电感器形成。使用90 nm CMOS的cmos cmos过程的表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。 SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。 这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。
一种基于低功耗改进型 PPN SRAM 单元的存储器阵列的新型设计及其对高速缓存存储器的分析评论 Gavaskar K、Surendar N、Thrisali S、Vishal M 电子与通信工程系 Kongu 工程学院 Perundurai,Erode – 638060,泰米尔纳德邦,印度。邮件 ID:gavas.20@gmail.com 摘要 – 高速缓存存储器是存储重复数据和执行操作的指令所必需的存储空间。现代处理器的速度已经显著提高,但存储器增强主要集中于在更小的空间中存储更多数据并减少延迟的能力。本文提出的基于 PNN 反相器的 10 T SRAM 单元电路由 2 个交叉耦合的 PNN 反相器(1 个 PMOS 和 2 个 NMOS 晶体管)、单端独立读取电路(2 个 NMOS 晶体管)和 2 个存取晶体管(2 个 NMOS)组成。将不同的漏电流控制技术(如 LECTOR 和 KLECTOR)应用于 10T PPN 和 10T PNN SRAM 单元以提高其保持性能,并比较其结果。8X8 存储器阵列由存储器单元、行和列解码器、预充电电路、感测放大器和写入驱动器电路组成。测量了读取、写入和保持操作的各种参数(如延迟、动态功率、功率延迟积、漏功率和静态噪声裕度),并与其他 SRAM 单元进行了比较。CADENCE Virtuoso Tool 用于设计 90 nm 技术中的各种电路。模拟结果表明,与其他单元相比,所提出的 SRAM 单元具有更好的性能,因此它可用于创建阵列结构。与其他阵列结构相比,基于 8X8 10T PNN SRAM 单元的阵列具有更低的功率和更少的延迟。
本质上,我在1988年底已经完成了II卷的章节。What are now Chapters VI (“The Cognitive Study of Afri- can Musical ‘Rhythm'”), VII (“African Music and Auditory Perception”) and IX (“Genealogy of a Malaŵian Musician Family”) were written especially for this volume, while the remaining two chapters, VIII on Yoruba chantefables and X on the tusona ideographs in Angola / Zambia, are adapted从其他情况下发表的文章。在内容和理论前景中,II卷在方法上比卷I更一般和跨文化,并且它具有高级级别的信息。因此,我建议读者从第I卷开始,并熟悉基础知识,例如在引言和第三章中(关于谐波模式和多态)和IV(关于Buganda的法院音乐的结构,如密码符号所示)。从那里读者可以继续第二卷,第六章等。目前的卷涉及各种与音乐理解有关的主题,在文化和跨文化上:听觉感知和认知,音乐和口头文学,音乐和图形象征主义以及个人创意音乐家的肖像 - Mwenda Jean Bosco(Congo)和Daniel J.Kachamba(Malaa(Malaa)(Malaapo))。将本卷的主要目标视为提出非洲节奏理论将是一种误解。我们已经超过了非洲的节奏重点,也是对宏伟理论的追求。我什至将“节奏”放在引号中。语言,口头文学,艺术,社会环境,历史意识)。我在第二卷中的基本关注是个人和传统的创造性音乐思想。各种文化中的音乐个性如何构思,分类,感知以及过程运动和声音,以及它们如何将其特定经验整合到更广泛的文化领域(例如这是我的询问的指南针和科学取向,答案来自许多文化的广泛样本。直到1994年,我一直定期修改和更新这些文本,希望该卷将于1995年出版。但是,这并没有带来。在柏林墙倒塌后不久,尽管著名的民族音乐学家和包括Yehudi Menuhin在内的著名民族音乐学家和演奏家进行了著名的测试,但出于经济原因,原始出版商,柏林国际传统音乐学院在柏林国际传统音乐学院就被德国当局关闭。我的书是突然缺乏资金的伤亡之一。我的卷在1994年出现,第二卷已经排版,这要归功于乌尔里希·韦格纳(Ulrich Wegner)的不懈合作,当时在同一研究所雇用。从那里开始了非洲音乐理论的奥德赛,第二卷。到1990年代中期,芝加哥大学出版社表示对Pub-
VI. 参考文献 [1] DanWang, Maofeng & Wucheng,“180nm CMOS 技术中的新型低功耗全加器单元”,DOI:10.1109/ICIEA.2009.5138242,工业电子与应用,2009 年。ICIEA 2000。第四届 IEEE 会议,2009 年 6 月。 [2] Kamlesh Kukreti、Prashant Kumar 等人,“基于多米诺逻辑技术的全加器性能分析”,DOI:10.1109/ICICT50816.2021.9358544,印度哥印拜陀,2021 年。 [3] Umapathi.N、Murali Krishna、G. Lingala Srinivas。 (2021)“对进位选择加法器独特实现的综合调查”,IEEE 和 IAS 第四届两年一度的新兴工程技术国际会议,于 1 月 15 日至 16 日在印度新孟买举行。[4] Subodh Wairya、Rajendra Kumar 等人,“用于低压 VLSI 设计的高速混合 CMOS 全加器电路性能分析”,DOI:10.1155/2012/173079,2012 年 4 月。[5] N. Umapathi、G.Lavanya (2020)。使用 Dadda 算法和优化全加器设计和实现低功耗 16X16 乘法器。国际先进科学技术杂志,29(3),918-926。[6] Pankaj Kumar、Poonam Yadav 等人,“基于 GDI 的低功耗应用全加器电路设计和分析”,国际工程研究与应用杂志,ISSN:2248-9622,第 4 卷,第 3 期(第 1 版),2014 年 3 月。[7] NM Chore 和 RNMandavgane,“低功耗高速一位全加器调查”,2010 年 1 月。[8] Gangadhar Reddy Ramireddy 和 Yashpal Singh,“亚微米技术下拟议的全加器性能分析”,国际现代科学技术趋势杂志第 03 卷,第 03 期,2017 年 3 月 ISSN:2455-3778。 [9] Chandran Venkatesan、Sulthana M.Thabsera 等人,“使用 Cadence 45nm 技术的不同技术分析 1 位全加器”,DOI:10.1109/ICACCS.2019.8728449,2019 年 3 月,印度哥印拜陀。[10] K.Dhanunjaya、Dr.MN.Giri Prasad 和 Dr.K.Padmaraju,“使用 45nm Cmos 技术的低功耗全加器单元性能分析”,国际微电子工程杂志(IJME),第 3 卷。 1,No.1,2015 年。[11] Karthik Reddy.G,“Cadence Virtuoso 平台中 1 位全加器的低功耗面积设计”,国际 VLSI 设计与通信系统杂志 (VLSICS) 第 4 卷,第 4 期,2013 年 8 月,DOI:10.5121/vlsic.2013.4406 55。[12] Kavita Khare 和 Krishna Dayal Shukla,“使用 Cadence 工具设计 1 位低功耗全加器”,引用为:AIP 会议论文集 1324,373 (2010),2010 年 12 月 3 日。[13] Murali Krishna G. Karthick、Umapathi N.(2021)“低功耗高速应用的动态比较器设计”。引自:Kumar A.、Mozar S. (eds) ICCCE 2020。电气工程讲义,第 698 卷。Springer,新加坡。[14] Murali Anumothu、BRChaitanya Raju 等人“使用基于多路复用器的 GDI 逻辑设计和分析 45nm 技术中的 1 位全加器的性能”,第 3 卷(2016),第 3 期,2016 年 3 月。[15] Partha Bhattacharyya、Bijoy Kundu 等人。al“低功耗高速混合 1 位全加器电路的性能分析”,第 23 卷,第 10 期,DOI:10.1109/TVLSI.2014.2357057,2015 年 10 月。