摘要:研究人员可以通过研究在现实环境中运动的人类来提高大脑研究的生态效度。最近的研究表明,双层脑电图可以提高步态过程中脑电皮层记录的保真度,但目前尚不清楚这些积极结果是否可以推广到非运动范式。在我们的研究中,我们在参与者打乒乓球时用双层脑电图记录大脑活动,乒乓球是一项全身反应性运动,可以帮助研究视觉运动反馈、物体拦截和表现监控。我们用时频分析和相关头皮和参考噪声数据来表征伪影,以确定不同传感器捕获伪影的效果。正如预期的那样,单个头皮通道与噪声匹配通道时间序列的相关性高于与头部和身体加速度的相关性。然后,我们比较了使用和不使用双层噪声电极的伪影去除方法。独立成分分析将通道分成多个成分,我们根据偶极子模型的拟合并使用自动标记算法来计算高质量大脑成分的数量。我们发现使用噪声电极进行数据处理可以提供更清晰的大脑成分。这些结果推动了记录需要全身运动的人类行为中高保真大脑动态的技术方法,这将对脑科学研究大有裨益。
[FEL49] William Feller。“关于随机过程的理论,对应用的尤为参考”。:1949年。URL:https:// api。Spenticscholar.org/corpusid:121027442。[SE19] Yang Song和Stefano Ermon。“通过估计数据分布梯度来生成建模”。in:神经信息处理系统的进步32(2019)。[HJA20] Jonathan Ho,Ajay Jain和Pieter Abbeel。“降级扩散概率模型”。in:神经信息处理系统的进步33(2020),pp。6840–6851。[儿子+20] Yang Song等。“通过stochastic微分方程基于得分的生成建模”。in:arxiv预印arxiv:2011.13456(2020)。[DN21] Prafulla Dhariwal和Alexander Nichol。“扩散模型在图像合成上击败了gans”。in:神经信息过程的进步34(2021),pp。8780–8794。[Kin+21] Diederik Kingma等。“变化扩散模型”。in:神经信息处理系统的进步34(2021),pp。21696–21707。[HS22] Jonathan Ho和Tim Salimans。“无分类器扩散指南”。in:arxiv预印术:2207.12598(2022)。[CHI+23] Cheng Chi等。“扩散策略:通过行动扩散进行视觉策略学习”。in:arxiv预印术:2303.04137(2023)。
环境模式的提取是人类整个生命周期学习的基础,不仅在认知技能中发挥着至关重要的作用,而且在感知、运动和社交技能中也发挥着至关重要的作用。至少有两种类型的规律有助于获得技能:(1)统计、基于概率的规律,以及(2)基于序列顺序的规律。基于概率和/或基于序列顺序的规律在短时间内(从几分钟到几周)的记忆表现已在整个生命周期中得到广泛研究。然而,这种知识的长期(数月或一年)记忆表现受到的关注相对较少,而且尚未在儿童中进行评估。在这里,我们旨在测试 9 至 15 岁之间的神经典型儿童在 1 年离线期间对基于概率和基于序列顺序的规律的长期记忆表现。参与者执行了视觉运动四选一反应时间任务,旨在同时测量基于概率和基于序列顺序的规律的习得。通过在 5 小时延迟后重新测试其表现来控制短期巩固效应。一年后,他们又在同一任务上接受了重新测试,两次测试之间没有任何练习。参与者成功地掌握了基于概率和基于序列顺序的规律,并在一年的时间里保留了这两种类型的知识。成功的保留与年龄无关。我们的研究表明,基于概率和基于序列顺序的规律的表征在很长一段时间内保持稳定。这些发现为技能巩固的发展不变性模型提供了间接证据。
摘要 对行为非人类灵长类动物进行电生理学研究通常需要将动物与其社会群体分开,并限制其部分运动,以进行良好控制的实验。当研究目标本身并不要求限制动物的运动时,通常仍需要通过系留数据采集来满足实验需求。同时,最近的技术进步允许在有限尺寸的围栏内以高带宽进行无线神经生理学记录。在这里,我们展示了来自不受约束的恒河猴的单单位分辨率无线神经记录,当时它们在我们定制的独立触摸屏系统 [实验行为仪器 (XBI)] 上在其家庭环境中执行自定进度的结构化视觉运动任务。我们能够成功地表征神经对任务参数的调节,例如在运动规划和执行过程中的视觉空间选择性,这与通过基于设置的神经生理学记录获得的现有结果一致。我们得出结论,当出于科学原因不需要限制运动和/或高度控制、隔离的环境时,笼式无线神经记录是一种可行的选择。我们提出了一种方法,让动物能够以自定节奏的方式使用我们的 XBI 设备,既可以进行全自动训练和认知测试,也可以在熟悉的环境中获取神经数据,与同类保持听觉联系,有时还可以保持视觉联系。
摘要 - 在3D中了解我们世界的动态对于机器人应用的性能和稳健性至关重要。尽管最近的进度已与视觉模型和体积渲染结合起来提供语义3D表示形式,但大型模型的推理时间既不是实时机器人操作的所需更新速度。在这项工作中,我们建议将“对象”注入基于3D高斯人的语义表示[1]。具有相同语义标签的高斯人可以一起初始化和更新,从而导致快速更新,以响应机器人和对象运动。所有必要的语义信息都是从验证的基础模型的第一步中提取的,从而规避了大型模型的推理瓶颈,但仍获取语义信息。只有三个相机视图,我们提出的表示形式可以实时捕获30 Hz的动态场景,这对于大多数操纵任务就足够了。通过基于我们的对象感知的高斯分裂来利用表示形式,我们能够求解语言条件的动态握把,为此,机器人抓取了开放词汇查询指定的动态移动对象。我们还使用该表示形式通过行为克隆来训练视觉运动策略,并表明该策略通过预审计的编码者获得了基于图像的策略的可比结果。视频https://object-aware-gaussian.github.io
改进上肢肌电假肢的努力通常旨在为肢体缺失者提供高度功能性 [1]。尽管技术进步,但与完整肢体相比,这些设备提供的功能有限,并且会施加高认知负荷,导致疲劳和沮丧 [2],这可能导致设备排斥 [3]。需要通过测量来直接评估认知负荷,以进一步了解在使用假肢期间如何有效地发展视觉运动行为。为此,脑电图 (EEG) 是理想的选择,因为它可以以高时间分辨率测量持续的神经活动。大脑中参与和与任务相关的区域的主动处理反映在 alpha 范围 (8-12 Hz) 内振荡幅度 (功率) 的抑制上 [4],[5]。熟练运动表现的发展特点是将处理资源有效分配给大脑中与任务相关的区域 [6]。最近,这种方法被用来证明与解剖手相比,使用假肢时头皮上检测到的阿尔法波功率有所下降,这反映了更有意识的控制 [7]。基于这项工作,我们提出了一个平台来评估使用假肢时的大脑动态。第一部分描述了为该平台创建的可定制、轻量级肌电假肢模拟器。第二部分描述了平台中使用的无线脑电图设备和分析。该项目已获得新不伦瑞克大学研究伦理委员会的批准 (REB #2019-098),所有试点测试均根据 REB 指南进行。最后,我们展示了反映功能抑制的皮质阿尔法波分布的试点数据,这可能表明认知负荷较高。
基于错误和基于奖励的运动学习机制在现实场景中同时发生,但传统上在实验室任务中通过反馈操作将它们区分开来。本研究通过将基于实验室的反馈操作应用于现实任务来检查这些机制的独特性。使用台球的具身虚拟现实 (EVR)——通过与实体台球桌、球杆和球的互动实现完整的本体感受——我们向现实任务中引入了视觉扰动。32 名参与者(12 名女性)进行了两次视觉运动旋转学习,一次带有错误反馈,一次带有奖励反馈。虽然未经训练的参与者通过错误反馈纠正了整个旋转,但通过奖励反馈只观察到部分纠正,突出了反馈机制对学习的影响。然而,奖励依赖性运动变异性、滞后 1 自相关衰减和试验间变异性衰减(所有基于奖励和技能学习的指标)在错误反馈会话中更高,这表明所提供的视觉反馈并没有专门参与特定的学习机制。运动后 beta 反弹 (PMBR) 是一种学习机制的大脑活动标记,对运动后 beta 反弹 (PMBR) 的分析表明,在奖励反馈期间 PMBR 会下降,但在错误反馈会话期间没有一致的趋势。这些发现支持了行为结果,表明虽然在错误条件下没有奖励反馈,但参与者仍然参与了基于奖励的学习。这项研究强调了运动学习过程的复杂性,并强调视觉反馈本身无法阐明现实世界中基于错误和基于奖励的机制之间的相互作用。
用于发展以后的运动技能(Blythe,2005; Gallahue等,2006;García-Alix&Quero,2012)。新生儿中的这些早期运动反应是刺激依赖性和非自愿性的。因此,婴儿在开发第一个感知过程和皮质控制之前无法抑制它们,从而使他们能够管理其行为并抑制自动反应(GarcíaMolina等,2009; Ivanovi´c等,2019)。今天,原始的重新流动被认为是复杂的运动模式(García-Alix&Quero,2012年)。在新生儿中,感觉运动皮层是具有高代谢活性的区域。它在生命的第二个和第三个月中生长,朝向视力和听力有关,并在第八个月份朝向额叶皮层(Merlo,2006年)。因此,在生命的第一年中,此过程发生在抑制原始反应的同时,在新生儿的行为中观察到重复的运动活动。从重复的运动序列中,随后发展运动学习。这有助于婴儿的基本运动系统的成熟,提高其运动技能,以及在更高的感知和认知过程中涉及的皮质 - 皮质循环的更复杂功能的发展和组成(Bushnell&Boudreau,1993; Campos等,2012; Diaond; Diaondl。; Merlo,2006; Murray,2006; Murray; Murray; Murray,2006年。重复的运动序列和运动学习导致电动机系统突触组织的变化,通过增加表示与执行运动的运动的表示,ENGRAM或电动图的数量。皮质皮质菌株被认为是一系列分层组织的模块,以不同级别的一些困难(皮层和/或皮层下的困难)从神经心理学的角度产生了重要的并发症(Heyder等人,2004年)。因此,如果未在生命的第一年中重复运动,则不会发生影响原始振动整合的运动图的突触重新构造(Kleim等,2002)。因此,原始反应保持活跃和刺激依赖性,而不会产生造成膜,并且更复杂的知觉和认知过程的成熟(Blythe,2002; Melillo&Leisman 2010; Thelen,2010年)。诸如Bein-Wierzbinski(2001)之类的研究指出了原始重复和感知过程之间的关系 - 在实施原始的重新抑制计划后,它显示了干预组如何改善与视觉运动功能的关系。在相同的静脉中,在学童中存在原始的反射,并且这些反应如何与降低的胶囊准确性和降低的阅读能力相关联。它还定义了相对于视力的细胞和总体运动发育的损害。存在原始振动的存在与眼睛运动不良,距离距离不良,固定不良,与眼手配位困难和视觉记忆有关(Berne,2006)。最受视觉运动发展影响的原始反应是Moro Re ex,tonic迷宫般的反应,脊柱Galant ref ex,不对称的滋补曲折ex和对称性滋补剂的反应(Berne,2006年)。,Andrich等人的研究。,Andrich等人的研究。(2018)没有发现脊柱Galant Re ex和Moro Ref ex的证据。Black(1995)和Blythe and Hyland(1998)的初步研究表明,神经循环困难的婴儿通过改善其运动和学校技能(Allen&Donald,1995)以及社会能力(Bluechardt等,1995),对体育锻炼计划做出了反应(Allen&Donald,1995)。这些结果已在Blythe(2002),Pica(2015)和Summerford(2001)中得到了证实。The current perspective points out that movement is at the base of the brain structure ( Diamond, 2000; Piek et al., 2004 ), which implies that movement allows for restructuring the brain ( Bernhardsson & Davidson, 1983 ), and that the sensorimotor sys- tem makes the brain learn to organise itself more efficiently than
背景:微度是短暂的睡眠实例,导致双眼的反应性以及部分或全部延伸的闭合。微骨会带来毁灭性的后果,尤其是在跨性别部门。研究目标:关于微渗的神经特征和潜在机制的问题。这项研究旨在更好地了解微骨的生理底物,这可能会使人们对现象有更好的了解。方法:分析了一项早期研究的数据,涉及20个健康的非腿部剥夺受试者。每个会话持续50分钟,并需要受试者执行2D连续的视觉运动跟踪任务。同时数据收集包括跟踪性能,Eye-Video,EEG和FMRI。一个人类专家在视觉上检查了每个参与者的跟踪性能和视频录音,以识别微质量。我们的兴趣是微度≥4-S的持续时间,使我们总共有10个受试者的事件。微填布事件分为四个2-S段(前,开始,开始,结束和帖子)(中间,开始和末端段之间存在差距,对于微渗> 4 s),然后通过检查以前的段来分析每个片段,通过检查源代源的eeg eeg power in delta,delta,theta,theta,alpha,alpha,beta,beta,beda,beda,beda,beda,beda,beda,beda sega sega sega sega sega,beda,beda,beda sega sega sega be n of seg eeg pown。结果:theta和alpha频段的EEG功率增加了微骨前和开始之间。在微渗的起点和末端之间,三角洲,beta和伽马频段的功率也增加。相反,在三角洲和阿尔法频段的微度末端和柱头之间的功率降低了。这些发现支持三角洲,theta和alpha频段中的先前发现。然而,以前尚未报道Beta和伽马频段的功率增加。结论:我们认为,在微观休息期间增加的高频活性反映了无意识的“ cogni tive”活性,旨在重新建立在积极任务中入睡后重新建立意识。
基底神经节中的多巴胺能功能障碍,尤其是在梭子鱼后部,通常被视为运动速度慢的主要病理机制(即Bradykinesia)在帕金森氏病中。然而,纹状体多巴胺损失无法解释运动表型和衰落率的个体差异,这意味着运动症状的表达取决于其他机制,其中一些机制本质上可能是补偿性的。基于观察到帕金森氏症患者的帕特托预性皮层中与运动相关活性增加的观察,我们测试了以下假设:临床严重程度个体差异是由补偿性皮质机制确定的,而不是基底神经神经神经节的功能障碍。使用功能性MRI,我们在353例帕金森氏病(≤5年疾病持续时间)和60个健康对照的患者中测量了与运动相关的大脑活动的变异性。在此任务中,我们通过改变个人可以选择的可能行动数量来操纵行动选择需求。临床可变性以两种方式表征。首先,将患者分为三种先前验证的离散临床亚型,这些亚型被认为反映了α-突触核蛋白繁殖的不同途径:弥漫性 - 触觉剂(n = 42),中间体(n = 128)(n = 128)或轻度运动 - 运动或运动率(n = 150)。第二,我们将整个样本中的Bradykinesia严重程度和认知表现的得分作为连续度量。患者表现出运动缓慢(较长的响应时间)和与对照组相比的基底神经节中与运动相关的活性降低。但是,临床亚型之间的基底神经节活性没有差异,并且与临床分数无关。这表明纹状体功能障碍在塑造临床严重程度的个体差异方面的作用有限。与我们的假设一致,我们观察到与患有轻度运动主要亚型的患者的parieto-premotor皮层中相关的动作选择相关活性增强,均与具有弥漫性实质性亚型和对照的患者相比。此外,parieto-premotor活性的增加与降低的头屈肌的严重程度和更好的认知能力有关,这表明了补偿性作用。我们得出的结论是,帕特托 - 前期薪酬而不是基底神经节功能障碍,塑造了帕金森氏病症状严重程度的个体变异性。未来的干预措施可能会集中于维持和增强补偿性皮质机制,而不仅仅是试图使基底神经节功能障碍归一化。