适应极端的热阴影网络可能会降低热量对樱桃质量的影响。网络可以保护果实免受晒伤并降低皮肤温度。降低太阳的影响为果实提供了更大的牢固和大的机会。新南威尔士州的苹果种植者已经使用遮阳净值来冷却水果,并成功地防止了较热区域的质量降级。这种适应策略可能会提高气候适应性并提高樱桃质量。网络还可以减少风,冰雹,鸟类和蝙蝠对水果的损害,并通过蒸发减少水分流失。
通过其脆弱性评估项目,新南威尔士州初级产业部正在通过提供信息和数据来帮助该行业更好地计划和响应气候变化,从而增强我们的初级行业的韧性。该项目评估了气候变化对广泛的牲畜,宽阔的种植,海洋渔业,林业,园艺和葡萄栽培的影响,以及与这些行业相关的重要生物安全风险,以告知合理的计划,风险管理和适应决策。
将有机覆盖物应用于葡萄底区域可以改善土壤水分和温度。使用防晒产品来减少晒伤的损害和抗转移剂以保持浆果完整性并减少水分流失,可以减轻某些影响。安装过度网的安装也可用于限制在高温下的日晒。新品种可能会更好地应对更高的温度,但最多需要30年才能开发和销售。葡萄酒行业还可能需要通过改变灌溉实践,升级水基础设施或采用新技术来提高水效率。
通过其脆弱性评估项目,新南威尔士州初级产业部正在通过提供信息和数据来帮助该行业更好地计划和响应气候变化,从而增强我们的初级行业的韧性。该项目评估了气候变化对广泛的牲畜,宽阔的种植,海洋渔业,林业,园艺和葡萄栽培的影响,以及与这些行业相关的重要生物安全风险,以告知合理的计划,风险管理和适应决策。
通过其脆弱性评估项目,新南威尔士州初级产业部正在通过提供信息和数据来帮助该行业更好地计划和响应气候变化,从而增强我们的初级行业的韧性。该项目评估了气候变化对广泛的牲畜,宽阔的种植,海洋渔业,林业,园艺和葡萄栽培的影响,以及与这些行业相关的重要跨界生物安全风险,以告知合理计划,风险管理和适应决策。
摘要:尽管经过了数十年的深入研究,但阿尔茨海默病 (AD) 的疾病改良治疗方法仍然非常需要。除了广泛分析的 tau 和淀粉样蛋白病理级联之外,还有两种有希望的研究途径最终可能确定 AD 的新药物靶点,这些研究途径基于对这种疾病的恢复力和易感性机制的更好理解。我们认为,大脑中的胰岛素样生长因子 I (IGF-I) 活性为 AD 的恢复力和易感性机制提供了共同的基础。我们推测,保留的大脑 IGF-I 活性有助于恢复 AD 病理,因为这种生长因子干预了被认为与 AD 有关的所有主要病理级联,包括代谢障碍、蛋白质稳态改变和炎症,这三种被认为是最重要的。相反,许多 AD 风险因素(如年老、2 型糖尿病、饮食不均衡、久坐不动的生活、社交、中风、压力和教育程度低)都存在 IGF-I 活性紊乱,而载脂蛋白 (Apo) E4 基因型和创伤性脑损伤也可能受到脑 IGF-I 活性的影响。因此,在分析这些过程时应考虑 IGF-I 活性,而保持 IGF-I 活性将有助于预防 AD 病理进展。因此,我们需要在所有这些条件下确定 IGF-I 活性并开发一种保持它的方法。然而,确定脑 IGF-I 活性不能仅仅基于这种神经营养因子的体液或组织水平,需要开发新的基于功能的评估方法。
随着年龄的增长,人脑的形态和组织中发生了明显的改变,其空间模式与众不同,部分是由于后来生命的细胞萎缩而部分的1,2。这种衰老过程38可能会因年龄介导的疾病,例如阿尔茨海默氏病,帕金森氏病和其他神经退行性疾病3。进一步了解我们对特定的40个神经生物学对脑衰老空间模式的影响,可能会洞悉大脑41健康衰老的变化以及临床结果的可能诊断标记。从历史上看,42比较神经科学一直是关于解剖学原理43和人脑功能专业的重要发现的有效催化剂4。具有开放和协作的努力44,例如国家黑猩猩大脑资源(NCBR)和灵长类日期交易所(Prime-de)5,45,以及改进的方法论和成像技术,大规模比较神经植物学46已经能够回答新的翻译问题6。47
方法和结果:从疾病控制中心中提取的县级死亡率数据(CVD是多种原因中糖尿病的潜在原因),控制多重原因(2015- 2019年),2018年社会脆弱性数据库基于其社会脆弱性指数(最少是第一个Quartsile cootile cootile cootile cootile cootile coartile coartile),将其汇总到四分位数中(四分之一)。由人口组分层,分析了总体CVD的数据,以及缺血性心脏病,高血压疾病,心力衰竭和脑血管疾病。在5年的研究期间,发现了387 139条与糖尿病相关的心血管死亡率记录。 与第一四分之一的四分位数相比,CVD的年龄调整后的死亡率更高(相对风险[RR],1.66 [95%CI,1.64–1.67]),估计为39 328多次死亡。 在最年轻的年龄段(<55岁)中,与第一个四分位数相比,社会脆弱性最高的人是心血管死亡率的2至4倍:缺血性心脏病(RR,2.07 [95%CI,1.97-2.17];心力衰竭;心脏失败;心脏失败; RR,3.03 [95%CI,2.62-3.5%3.5%; RR,3.5%]; RR,3.99; CI,3.45–4.17]和脑疾病(RR,4.39 [95%CI,3.75–5.13])在5年的研究期间,发现了387 139条与糖尿病相关的心血管死亡率记录。与第一四分之一的四分位数相比,CVD的年龄调整后的死亡率更高(相对风险[RR],1.66 [95%CI,1.64–1.67]),估计为39 328多次死亡。在最年轻的年龄段(<55岁)中,与第一个四分位数相比,社会脆弱性最高的人是心血管死亡率的2至4倍:缺血性心脏病(RR,2.07 [95%CI,1.97-2.17];心力衰竭;心脏失败;心脏失败; RR,3.03 [95%CI,2.62-3.5%3.5%; RR,3.5%]; RR,3.99; CI,3.45–4.17]和脑疾病(RR,4.39 [95%CI,3.75–5.13])
根本原因分析(RCA)对于从模糊结果中发现疾病至关重要。通过在模糊过程中观察到的崩溃来自动化此过程,被认为是具有挑战性的。特别是,已知当今的统计RCA方法非常慢,通常需要数十个小时甚至一周的时间来分析崩溃。此问题来自此类方法的偏差采样。更具体地说,如果输入引起了程序中的崩溃,这些方法通过将其突变以生成新的测试用例,以围绕输入进行样式。这些情况用于模糊程序,希望可以充分采样原始输入的执行路径上的一组程序元素(块,指令或谓词),以便可以确定它们与崩溃的相关性。此过程倾向于生成输入样本,更可能导致崩溃,其执行路径涉及一组类似的元素,而这些元素变得越来越不可分割,直到已经进行了大量样品。我们发现,可以通过对“反例”进行抽样来有效地解决此问题,这会导致当前相关性估计值发生重大变化。这些输入尽管仍然涉及这些元素通常不会导致崩溃。发现它们在区分程序元素中有效,从而加速了RCA过程。基于局面,我们设计并实施了增强学习(RL)技术,以奖励涉及反例的操作。通过平衡随机抽样与反例上的综合采样,我们的新方法(称为r a c ing)被证明可以实质上提高当今统计RCA的可伸缩性和准确性,从而超过最终的最大程度的命令。
抽象背景:多种基因剂量障碍(GDDS)增加了精神障碍的风险,但是到目前为止,GDD对人脑的影响的表征是零散的,几乎没有对不同GDD的多个大脑特征的同时分析。方法:在这里,通过3种非倍性综合征的多模式神经影像学(xxy [总n = 191,92个对照参与者],XYY [总n = 81,47个对照参与者]和三体第21和三体21 [总n = 69,41个对照参与者],我们系统地介绍了超级X和超级X的chrom,y和chrom y 13不同的宏观结构,微结构和功能成像 - 衍生表型(IDP)。结果:结果表明,GDD和IDP的皮质变化有相当多的多样性。IDP变化的这种变化突显了单独研究GDD效应的局限性。在所有IDP更改图中的集成揭示了每个GDD的皮质变化的高度不同的结构,以及部分合并到所有3个GDD中很明显的皮质脆弱性的常见空间轴上。这个共同的轴与行为定义的精神疾病的共同皮质变化表现出很强的一致性,并且在特定的分子和细胞特征方面富含。结论:在3个非整倍性中使用多模式神经影像学数据表明,不同的GDD施加了人脑中不同的变化识别,这些变化是根据所考虑的成像方式而广泛不同的。嵌入在这种变化中的是共同多模式变化的空间轴,与精神病障碍之间的大脑变化保持一致,因此代表了神经科学中未来翻译研究的主要高优先级目标。