摘要为了确保线弧添加剂制造(WAAM)组件的几何精度,必须分析过程参数如何影响焊珠尺寸和形状。本文提出了一个正式且可重复的程序,通过增强全覆盖的光学扫描,重点关注通过冷金属传递(CMT)焊接过程实现的多层薄壁封闭标本,从而完全表征珠子的几何形状。已经根据过程参数计划制造了一系列圆形标本,并用GOM边缘投影3D光学扫描仪扫描,在Rhinoceros 3D CAD环境中进行了几何处理,并根据ANOVA方法对统计学上的分析进行了分析。已经评估了平均尺寸,横向波动,连续层之间的相互作用以及封闭层路径的割炬开关/关闭区域。已经建立了珠子大小和沉积参数之间的数值相关性。获得的结果还揭示了形状和尺寸的可变性,突出了控制几何学精度的挑战。最后,根据这些结果制定了过程规划指南。
本报告是作为美国政府机构赞助的工作的记录而编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文中以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
用于金属零件制造的增材制造 (AM) 因其灵活性和工艺能力而获得了越来越多的市场份额。AM 似乎特别适合小批量生产,例如高度定制的零件(例如,手术植入物中使用的假体)或原型。在这种情况下,电弧增材制造 (WAAM) 是一种能够以分层方式生产三维组件的工艺。WAAM 属于直接能量沉积技术 1 。通过专用头部选择性沉积熔融金属来创建层。原材料以金属丝的形式进料,并通过电弧的加热作用熔化 2 。 WAAM 的优势在于:(i)可实现的构建速度明显高于基于激光的增材工艺(50-130 克/分钟 vs. 2-10 克/分钟)3 ,以及(ii)可以生产更大的部件(1000-2000 毫米 vs. 300-600 毫米)4 。与其他基于粉末的 AM 工艺相比,WAAM 的主要缺点是尺寸精度和特征分辨率降低 5 。因此,WAAM 在经济上方便,适用于
• 实施监控以表征熔池的热稳定性和几何稳定性、熔珠的形态以及零件内的热梯度和制造过程中零件的变形。 • 优化测量数据的处理:将数据压缩为可靠、有效的残留状态指标(局部热稳定性、熔池形态稳定性、层高或焊道形状的稳定性);减少数据处理时间;合并来自不同来源的数据;研究闭环数据使用中的不确定性的传播。 • 根据不同标准对解决方案的效率进行评估:精度(准确度、保真度)、空间分辨率、采集和处理时间与在线使用的兼容性、残余状态指标对过程偏差的敏感性、实施的简易性。
摘要:通过气体保护金属电弧焊 (GMAW) 进行线弧增材制造 (WAAM) 是生产大体积金属部件的合适选择。主要挑战是电弧对生成的层具有高且周期性的热输入,这直接影响层的几何特征(例如高度和宽度)以及冶金性能(例如晶粒尺寸、凝固或材料硬度)。因此,必须减少能量输入进行处理。这可以通过短弧焊接方案和相应的节能焊接工艺来实现。进一步降低能量的高效策略是在焊接过程中调整接触管与工件的距离 (CTWD)。基于电流控制的 GMAW 工艺,由于延伸电极的电阻率增加和电源电压恒定,CTWD 的增加导致焊接电流降低。本研究展示了在低合金钢 WAAM 过程中系统调整 CTWD 的结果。由此,可以实现高达 40% 的能源节约,从而适应增材制造工件的几何和微观结构特征。
摘要:通过线材+电弧增材制造 (WAAM) 成功高效地生产具有特定特征的零件,在很大程度上取决于选择正确且通常相互关联的沉积参数。这项任务在制造薄壁时可能特别具有挑战性,因为薄壁可能会受到加工条件和热积累的严重影响。在此背景下,本研究旨在扩大工作范围并优化 WAAM 中的参数条件,以预制件的相对密度和表面方面作为质量约束。实验方法基于通过 CMT 工艺在其标准焊接设置上沉积薄 Al5Mg 壁,并采用主动冷却技术来增强沉积稳健性。通过阿基米德方法估算内部空隙。通过视觉外观评估壁的表面质量,通过横截面分析评估表面波纹度。所有条件均表现出高于 98% 的相对密度。通过在焊枪上添加辅助保护气喷嘴和部件散热强度,将标准焊接硬件升级为 WAAM 用途,大大扩展了工艺工作范围,并通过多目标优化成功证明了其适用性。总之,提出了一种实现预期预制件质量的决策程序。
摘要:要增加制造吞吐量并降低硅光子包装的成本,需要采取耐受的方法来简化纤维到芯片耦合的过程。在这里,我们通过单层在芯片的背面单层整合微液体来证明硅光子光子学的扩展耐亮束背面耦合界面(在O波段中)。从通过散装硅底物的Te模式光栅扩展衍射的光束后,将横梁准直借助微粒,从而提高了对侧向和纵向错位的偶联耐受性。在1310 nm的波长下,证明了膨胀的梁直径为32 µm,横向A±7 µm和A±0.6°角纤维1-DB对齐耐受性。另外,当从微丝耦合到热膨胀的核心单模纤维中时,将获得耦合效率0.2 dB的纵向比对耐受性。
增材制造 (AM) 技术在金属 3D 打印过程中的灵活性已引起研究和工业界的广泛关注,该技术可用于制造复杂且精密的近净成形 (NNS) 几何设计。实现电弧增材制造 (WAAM) 部件的预期特性主要取决于对重要加工变量的仔细选择和精确控制,包括焊珠沉积策略、焊丝材料、热源类型、焊丝送料速度和保护气体的应用。因此,优化这些最重要的工艺参数的方法已得到改进,从而生产出更高质量的 WAAM 制造部件。因此,这有助于该方法的普及度和许多应用的全面提升。本文旨在概述 WAAM 中的焊丝沉积策略和工艺参数的优化。总结了制造高质量增材制造金属部件所需的 WAAM 方法中的多种线材沉积技术和工艺参数的优化。提出了 WAAM 优化算法,并预测了技术发展。随后,讨论了在快速发展的 WAAM 领域中 WAAM 优化的潜力。最后,从所审查的研究工作中得出结论。
摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
本工作采用了一种创新技术——电弧增材制造 (WAAM),这是一种定向能量沉积技术,用于裂纹钢部件的疲劳强化。在高周疲劳载荷条件下测试了不同的带有中心裂纹的钢板,包括参考板、用 WAAM 修复的具有沉积轮廓的钢板以及用 WAAM 修复并随后进行加工以降低应力集中系数的钢板。进行了相应的有限元模拟,以更好地理解 WAAM 修复的机理。参考板上现有的中心裂纹在 94 万次循环后扩展并导致断裂,而两块 WAAM 修复板中的中心裂纹并未扩展,这是由于净横截面积增加以及沉积过程引起的压应力。然而,在第二块钢板中,由于局部应力集中,在 WAAM 轮廓根部出现了新的裂纹,疲劳寿命达到了 220 万次循环(是参考板的 2.3 倍)。另一方面,第三块钢板由于加工轮廓光滑,经受了 900 多万次疲劳循环,没有出现明显的退化。这项研究的结果表明,WAAM 修复技术在解决钢结构疲劳损伤方面具有巨大潜力。