摘要 线材和电弧增材制造 (WAAM) 是一种增材制造 (AM) 工艺,可以生产大型金属部件,材料浪费少,生产率高。然而,WAAM 的高沉积率需要高热量输入,这可能导致孔隙、裂纹、未熔合或变形等潜在缺陷。为了在工业环境中实际实施 WAAM 工艺,必须确保无缺陷生产。然而,使用传统 NDT 技术(例如超声波、涡流、X 射线)进行 NDT 检测是一项非常艰巨的任务,尤其是在零件生产过程中。因此,需要可靠的在线 NDT 检测和监测技术来推广 WAAM 的工业应用。这项工作的目的是使用频率带宽为 10 至 1MHz 的现场采集声学数据来检测 WAAM 生产零件上的缺陷形成。WAAM 零件经过故意引入污染物的处理,同时获取其声学信号以将不同的信号特征与缺陷关联起来。为了识别缺陷形成,使用了两种不同类型的麦克风从同一沉积过程中获取数据。信号处理包括应用时域和频域技术,即功率谱密度和短时傅立叶变换。获得的声学特征可以区分有缺陷和无缺陷的信号,并确定污染物的空间位置。获取的声学信号还表明,传统麦克风获取的数据不足以完全表征 WAAM 工艺发出的声谱。这项工作展示了声学数据和信号处理在 WAAM 生产部件的在线检查中的潜力。关键词:WAAM、声学、傅里叶变换、光学麦克风、STFT
结构。此外,与基于粉末的AM技术相比,使用电线作为原料相比,在制造过程中,与安全有关的风险水平降低了。WAAM技术可以通过使用铝,钢和钛和功能分级的材料等多种合金来用于制造简单和复杂的零件。5除了制造新零件外,WAAM技术还促进了损坏的结构的修复,作为更换整个组件的替代方法。6,7类似于所有AM技术,以及WAAM提到的所有优点,此技术也可能涉及一些缺点。这种制造方法的主要缺点是可能在所构建部分的外表表面相对较高的粗糙度和尺寸的不准确性,可能会施加进一步的沉积后处理,例如表面加工,高压力滚动等。WAAM技术自1990年代以来就已经开发和研究,目前已被航空航天和汽车等几个行业采用,用于制造工业规模的组件。8,9近年来已经进行了进一步的发展,以通过打印大规模的桥梁从组件大小到结构水平的WAAM构造部分的规模。10,为了探索WAAM技术对大型结构的低成本制造的适用性,在各种载荷条件下和不同环境中,必须完全表征由常规钢制成的WAAM建筑零件(即相对便宜)。对于在服务过程中,工程组件或结构在服务过程中受到重复负载周期的工业应用,例如海洋结构,疲劳评估是设计和生活评估阶段的关键考虑。11 - 13尤其是出于生活预测目的,研究材料的疲劳行为至关重要,以更好地了解此类组件中的损害演变和失败行为。因此,必须对由各种合金制成的WAAM构建组件的疲劳行为进行可行性研究,以检查WAAM技术和特定合金在工业应用中的适用性,其中组件或结构受到重复的环状应力。虽然在WAAM建造的零件14,15且偶尔不锈钢的WAAM建造零件中提供了一些有限的疲劳裂纹增长(FCG)数据,但更有效的低碳钢的疲劳响应尚未探索,尚待在诸如Off-Shore off-Shore off-shore wind之类的较不安全临界行业中应用。知道钢合金是在离岸应用中制造金属结构中使用的最合并的材料类型,对WAAM建筑零件的FCG行为进行了进一步研究
电线定向能量沉积(DED),也称为电线 - 弧形添加剂制造(WAAM),是一种金属3D打印技术,以其高效率,成本效益,构建量表的灵活性以及对建筑行业的适用性而闻名。但是,仍然缺乏有关WAAM元素结构性表现的基本数据,尤其是关于其疲劳行为的基本数据。因此,已经进行了对WAAM钢板疲劳行为的全面实验研究,并在此报告。在几何,机械和微观结构表征之后,在单轴高周期疲劳载荷下测试了一系列WAAM优惠券。已经进行了涵盖各种应力范围和应力比(r = 0.1、0.2、0.3和0.4)的正式和加工息票的75次疲劳测试。数值模拟也研究了由其表面起伏引起的局部应力浓度。使用恒定寿命图(CLD)和S -n(应激寿命)di agrams分析疲劳测试结果,该结果基于标称和局部应力。CLDS表明,未建造的WAAM钢的疲劳强度对不同的应力比相对不敏感。S -n图显示,相对于机械加工材料,在疲劳耐力限制的疲劳耐力极限中,表面起伏的降低约为35%,在同一负载水平下疲劳寿命减少了约60%。还为WAAM钢提出了基于标称应力的初步压力和基于局部应力的S-N曲线。表明,AS建造和加工的WAAM优惠券分别表现出与常规钢对接焊缝和S355结构钢板的相似疲劳行为。
使用电弧增材制造 (WAAM) 作为铁镍 36 (Invar36) 合金航空航天工具的制造方法,是许多工具公司和复合飞机制造商越来越感兴趣的领域。然而,由于缺乏行业经验和最终零件质量先例,WAAM 技术的全面采用和利用受到阻碍。对于一些工具制造商来说,使用增材制造的 Invar 组件的可行性仍在研究中,因为对最终零件的关键材料特性尚不清楚。此外,实施增材制造对制造商内部运营的影响尚未得到广泛记录。虽然已经对 WAAM 技术、Invar 和新技术引入的变更管理进行了大量学术研究,但大部分现有文献并未提供取代航空航天工具制造商对实践经验的需求所需的具体信息。本研究将调查在航空航天工具制造中使用 WAAM Invar 组件(就最终部件质量和性能而言)的技术可行性,以及采用该技术的组织可行性和影响。本论文将描述在航空航天工具制造商的背景下评估 WAAM Invar 的一系列测试,并概述航空航天工具制造公司采用增材制造必须承认的一些关键组织影响。通过这项研究,我们希望证明将 WAAM Invar 用于航空航天工具应用的可行性。
简介金属增材制造 (AM) 具有一系列积极的特性:自动化、制造复杂几何形状的能力、组件优化、整合装配、数字库存和减少材料浪费。其他大型金属行业已经意识到并应用了这些优势,包括航空航天、发电、海事和国防。电弧增材制造 (WAAM) 是一种定向能量沉积 (DED) AM 工艺,能够使用金属原料(例如传统焊丝耗材)进行打印。WAAM 的进步,即它与机械臂和定位器的集成,允许制造以英尺为单位的大型组件。由于这些原因,WAAM 成为生产大型结构部件的理想选择。但是,目前缺乏对 WAAM 的材料和疲劳行为的基础知识,可能会阻碍其在建筑和运输结构行业的广泛应用。
摘要 在各种增材制造 (AM) 技术中,线材和电弧增材制造 (WAAM) 是最适合生产大型金属部件的技术之一,同时也表明其在建筑领域具有应用潜力。目前已有多项研究致力于钢和钛合金的 WAAM,最近,人们也在探索 WAAM 在铝合金中的应用。本文介绍了使用商用 ER 5183 铝焊丝生产的 WAAM 板的微观结构和机械特性。目的是评估平面元件在拉伸应力下可能出现的各向异性行为,考虑相对于沉积层的三个不同提取方向:纵向 (L)、横向 (T) 和对角线 (D)。进行了成分、形态、微观结构和断口分析,以将 WAAM 引起的特定微观结构特征与拉伸性能联系起来。发现试样取向具有各向异性行为,T 试样的强度和延展性最低。造成这一现象的原因在于,微观结构不连续性在拉伸方向上存在不利的方向。拉伸试验结果还表明,与传统的 AA5083-O 板材相比,其整体机械性能良好,表明未来可用于实现非常复杂的几何形状和优化形状,以实现轻量化结构应用。
• 先进的电弧焊技术,包括双弧和串联工艺 • 激光束和混合焊接技术及应用 • 送丝或粉末电子束焊接 • 药芯焊丝和无缝药芯焊丝技术及其用途 • 全金属合金焊接及其焊缝测试和分析 • 工业应用、检查和测试 • 增材制造部件的表面改性 • 高强度和装甲钢焊缝及其性能(包括弹道性能) • 水下和湿焊技术及其耗材 • 金属增材制造 (MAM) 材料的设计和模拟方面 • MAM 材料的测试、MAM 部件的变形预防和残余应力 • MAM 和双金属 WAAM 部件的疲劳和断裂韧性方面 • 机器人 MAM 和 WAAM 应用中的编程和软件开发 • 增材制造的预测理论和计算方法 • MAM 和 WAAM 部件的测试、无损检测方法和缺陷评估 • 焊接和 MAM 和 WAAM 人员的教育-培训-认证发展
电弧增材制造 (WAAM) 是一种允许高效原位生产组件或再制造的工艺,它能够以更高的沉积速率和更低的成本进行生产。然而,WAAM 组件在沉积过程中会受到散热的影响,从而导致粗柱状晶粒生长,造成机械性能较差,限制工业应用。因此,本研究调查了将 Al 2 O 3 陶瓷粉末颗粒孕育剂引入 AWS A5.9 ER308LSi 不锈钢壁结构中的作用,通过细化晶粒工艺来提高机械性能。在沉积过程中,当温度降至 150ᵒC 时,手动将 Al 2 O 3 陶瓷粉末颗粒添加到每一层。为了弥补这些知识空白,我们进行了一系列完整的拉伸测试。制造了 WAAM 壁并分析了样品的微观结构。结果表明,WAAM SS308LSi 部件在沉积方向上的最高抗拉强度为 560 MPa,与未接种样品相比增加了 6%。这种改进是由于晶粒细化和异质成核的成功。该研究证明了该技术在 WAAM 部件制造或再制造过程中改善机械性能和微观结构的潜力。
摘要:通过直接沉积制备的双金属结构由于异种金属的组织和性能突然变化而存在缺陷。激光金属沉积(LMD)-电弧增材制造(WAAM)工艺可以通过沉积功能梯度材料(FGM)层(例如使用LMD的薄中间层)来缓解两种不同材料之间的缺陷,并可用于使用WAAM以较高的沉积速率和相对较低的成本制备双金属结构。本研究进行了LMD-WAAM工艺,并研究了制备的IN625-SUS304L双金属结构的微观组织。LMD-WAAM样品的FGM区的微观组织主要为细小的等轴枝晶形貌。相反,WAAM区构成了粗大的柱状枝晶形貌。LMD-WAAM样品的主要合金元素的成分随着沉积层高度而逐渐变化。 LMD-WAAM 样品的显微硬度随 Inconel 含量的增加而增加。对于 LMD-WAAM 样品,断裂发生在 25% IN625 和 0% IN625 之间的界面附近;对于 WAAM 样品,最终断裂发生在界面附近的 SUS304L 中。LMD-WAAM 样品的拉伸强度与激光功率成反比。结果表明,LMD-WAAM 样品的拉伸强度比仅使用 WAAM 制造的样品高 8%。
摘要:线材和电弧增材制造 (WAAM) 是一种基于传统电弧焊工艺的先进金属材料 3D 打印方法。WAAM 被认为是制造大尺寸金属部件的合适方法,具有高沉积速率和低成本的特点。在本研究中,使用 WAAM 沉积专门设计和制造的低碳高强度钢 (Grade 3D AM 80 HD) 线材(相当于 AWS ER 110S-1 线材的成分)以打印多焊道壁,旨在探索其在重载海洋应用中的可行性。进行了参数研究以找到最佳沉积电压和重叠率。采用垂直位置补偿法来优化相邻层之间焊枪的步进距离。沉积部件的微观结构通过 Thermal-Calc 软件进行表征和指示,然后测量硬度并预测拉伸强度。此外,还对 WAAMed 3D AM 80 HD 壁、3D AM 80 HD 线材、AWS ER 110S-1 线材和线材制造商(Voestalpine Böhler Welding Corporation)生产的 WAAMed 壁的抗拉强度进行了比较。关键词。线材和电弧增材制造 (WAAM)、钢材、参数研究、微观结构、机械性能。