• 为提高性能,晶圆工艺技术的快速发展推动了 HKMG 和 FinFET 等可靠性极限。 • 晶圆上新材料的加速引入:铜、超低 k ILD、气隙、氮化氧化物、高 K 栅极电介质和新互连 • 先进的封装和凸块技术:fcBGA、fcCSP、WLCSP、无铅凸块、铜柱、铜线、微凸块、多层 RDL、TSV/Interposer、3D/2.5D、FanOut WLP 封装和 SiP • 新封装材料:增材制造基板、超低损耗电介质、底部填充材料、塑封材料、基板表面处理、无铅和铜凸块等 • 多级应力相互作用使可靠性失效机制变得复杂 • 日益严格的客户要求和应用 • 快速上市需要可靠性设计以减少认证/批量生产时间
兄弟。7Khjudwlrq ri hohfulf yhklfohv(9V lqwr vpduw julgv hevelppy pdmru iru hiihfwlyh hqhujh hqhujh pdjhqh pdjhqw 7klv 7klv 7klv uhvhdufk uhvhdufk uhvhdufk wiruhfdvw dqg pDQG PDQD(9 ghpdqg lq vpduw julgv lqwhqg wr lqfuhdvh julg hiihfwqhqhqg ghhqgdeoh rshudwlrq: DV WLP RI XVDJH FKDFWHULVWLFV RI WKH HQYLURQP THIS THIS IS EHKDYLUV CONSTAN DFFXUDF\ 2XU UHVXOWV LPSO\ WKDW HQKDQFHG SUHGLFWLRQ AND PD\ FRQVLGHUDEO\ IDO WKH OHYHO RI GHWDLO. RI (9 ORDG IRUHFDVWV )XUWKHUPRUH ZHFRPHQ ORDG ORDG ORDJHP VERY V\VHPV EDUTIONAL EDUTIONAL EDUTIONAL IRUHDO IRUHFDVWV WR HQKDQFH HQHUJ\ GLVWLRQ AND ORZHU 7KLV VPDQ 7KLV VWXG\ SUHVHVQWV和srwlqh ohduqlqj。 3UHGLFWLRQ(qhuj \ 0dqdjhqw /div>
作为IC制造的最后一步,包装是封装芯片并提供最终表单I/O的互连的过程。对越来越高的I/O密度,缩小设备尺寸和较低成本的需求也适用于包装过程。为了实现这些目标,已经开发了各种技术,其中大多数是晶圆级包装(WLP)。与传统的包装过程不同,大多数I/O互连是在晶状体级别进行的,并使用重新分布层(RDL)进行。rdls是铜线和远处形成电气连接的层。取决于应用程序的市场,例如移动,内存或物联网(IoT),粉丝 - 外部晶圆级包装(FOWLP)提供了支持I/O密度要求和良好的RDL线/空间的最有希望的方法。此外,还开发了粉丝范围的面板级包装(FOPLP),以利用规模经济并优化底物利用率。在这项技术中,该过程中使用了矩形基板,而不是像晶圆那样的圆形底物。
摘要:影响晶圆级先进封装可靠性的设计参数包括上下焊盘尺寸、焊料体积、缓冲层厚度、芯片厚度等。传统上,采用加速热循环试验(ATCT)来评估电子封装的可靠性寿命,但通过ATCT优化设计参数耗时长、成本高,减少实验次数成为关键问题。近年来,许多研究人员采用基于有限元的仿真设计(DoS)技术进行电子封装可靠性评估。DoS技术可以有效缩短设计周期、降低成本,并有效优化封装结构。然而,仿真分析结果高度依赖于研究人员个体,并且通常彼此不一致。人工智能(AI)可以帮助研究人员避免人为因素的缺点。本研究通过结合人工智能和仿真技术来预测晶圆级封装 (WLP) 可靠性,展示了 AI 辅助 DoS 技术。为了确保可靠性预测准确性,在创建大型 AI 训练数据库之前,通过多次实验验证了模拟程序。本研究研究了几种机器学习模型,包括人工神经网络 (ANN)、循环神经网络 (RNN)、支持向量回归 (SVR)、核岭回归 (KRR)、K 最近邻 (KNN) 和随机森林 (RF)。本研究根据预测准确性和 CPU 时间消耗对这些模型进行了评估。
由波士顿时装设计学院(SFD)的照片学生,教职员工和校友以及当地的社区成员一起在假期中加入,并手工制作的围巾,麻省理工学院和帽子捐赠给了今年的Martin Luther king Jr.服务周末。他们于1月17日进行捐款。妇女的午餐场所启发了希望,并支持女性的自我维持技能发展,使饥饿,无家可归和贫穷持持疾病。尊重和支持授权和稳定的个人旅程对于妇女午餐场所的使命至关重要。有关其任务的更多信息可在womenslunchplace.org上在线提供。这是SFD第二次组织了制造商活动,将温暖的物品捐赠给WLP。由SFD教职员工带头的第一批努力 - 是2014年,是马尔登·米尔斯(Malden Mills)倒闭的羊毛剩余捐赠的结果。如图,从左到右,是时装设计学院执行董事Jennifer Leclerc;雷切尔·克莱因(Rachel Klein)的午餐场所;妇女午餐场所计划经理Stacey Zellen;时装设计学院的行政协调员Sadieann Strouse;和时装设计学生的丹妮尔·卡斯特利(Danielle Castelli)。
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低