摘要 — 二维 (2D) 半导体晶体可用于进一步提高场效应晶体管的效率和速度。此类晶体管不受传统 MOS 晶体管在尺寸减小时产生的一些不利影响。本研究提出了以二维晶体为沟道的晶体管 MOS 结构模型,并研究了其电荷特性。在 MoSe 2 、WS 2 、WSe 2 、ZrSe 2 、HfSe 2 和 PtTe 2 等代表性二维晶体的电物理特性变化范围内对这些特性进行了数值模拟。发现了结构电物理参数通过化学势的自洽相关性,并证明了场电极电位和栅极绝缘体电容对它们的影响。对该晶体管结构的传输特性陡度与电压增益的计算表明,对于禁带宽度在0.25–2.1 eV范围内的过渡金属二硫属化合物(TMD)沟道,上述参数的幅度分别可达0.1 mA/V和1000。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
对应物。[2]因此,2D材料非常适合柔性光电子,并且有可能用于下一代超薄电子和光电设备。[1]在2004年发现石墨烯时,首先实现了2D材料的概念。[4]石墨烯对其出色的电气,光学和机械性能引起了广泛的关注。[4-6]已经研究了各种技术应用,包括Spintronics,sensors,opetelectronics,SuperCapitors和Solar Cells等。[5,7] Besides graphene, other 2D materials, such as h-BN, phosphorene, silicene, germanene, and transition metal dichalcogenides (molybdenum disulfide (MoS 2 ), molybdenum diselenide (MoSe 2 ), tungsten disulfide (WS 2 ), and tungsten diselenide (WSe 2 ), etc.),近年来已经进行了广泛的研究。[1,8–11]单层二维材料的厚度通常在订单上或小于1 nm。同时,它们的侧向尺寸可以达到更大的尺寸(从微米到偶数英寸),并且在随后的处理或进行特征或设备应用程序的后续处理或后续测量之前,可以将2D材料转移到不同的基板上。
摘要 — 我们在此介绍我们在原子模型求解器 ATOMOS 中实现的先进 DFT-NEGF 技术,以探索新型材料和器件(特别是范德华异质结晶体管)中的传输。我们描述了使用平面波 DFT、随后进行 Wannierization 步骤和原子轨道 DFT 的线性组合的方法,分别导致正交和非正交 NEGF 模型。然后,我们详细描述了我们的非正交 NEGF 实现,包括非正交框架内的 Sancho-Rubio 和电子-声子散射。我们还介绍了从第一原理中提取电子-声子耦合并将其纳入传输模拟的方法。最后,我们将我们的方法应用于新型 2D 材料和器件的探索。这包括2D材料选择和动态掺杂FET,以实现最终的小型化MOSFET,vdW TFET的探索,特别是可以实现高导通电流水平的HfS 2 /WSe 2 TFET,以及通过金属半导体WTe 2 /WS 2 VDW结型晶体管的肖特基势垒高度和传输的研究。
固态纳米孔传感的一个长期未实现的目标是在转位过程中实现 DNA 的平面外电传感和控制,这是实现碱基逐个棘轮的先决条件,从而实现生物纳米孔中的 DNA 测序。二维 (2D) 异质结构能够以原子层精度构建平面外电子器件,是用作电传感膜的理想但尚未探索的候选材料。在这里,我们展示了一种纳米孔架构,使用由 n 型 MoS 2 上的 p 型 WSe 2 组成的垂直 2D 异质结二极管。该二极管表现出由离子势调制的整流层间隧穿电流,而异质结势则相互整流通过纳米孔的离子传输。我们同时使用离子和二极管电流实现了 DNA 转位的检测,并展示了 2.3 倍的静电减慢的转位速度。封装层可实现稳健的操作,同时保留用于传感的原子级锐利 2D 异质界面的空间分辨率。这些结果为单个生物分子的非平面电传感和控制建立了范例。
了解哈伯德模型对于研究各种多体状态及其费尔米金和玻色子版本至关重要。最近,过渡金属二分元元素杂叶剂已成为模拟Hubbard模型丰富物理学的有前途的平台。在这项工作中,我们使用托有此杂种颗粒密度的WS 2 /WSE 2异核器设备探讨了费米子和玻色子种群之间的相互作用。我们分别通过电子掺杂和电子孔对的光学注射来独立调整费米子和骨气群。这使我们能够形成强烈相互作用的激子,这些激子在光致发光光谱中表现出很大的能量隙。通过观察激子强度的抑制抑制激子的抑制,而不是玻色子的弱相互作用气体的预期行为,这表明爆发剂的预期行为,这表明形成了玻体莫特绝缘子,进一步证实了激子的不可压缩性。我们使用包括相空间填充的两波段模型来解释我们的观察者。我们的系统提供了一种可控的方法,可以在广义的bose-fermi-Hubbard模型中探索量子多体效应。
光学纳米天线能够在纳米尺度上压缩光并增强光与物质的相互作用,因此对光子器件和光谱学具有重要意义。其中,由支持声子极化子的极性晶体制成的纳米天线(声子纳米天线)表现出最高的品质因数。这是因为这些材料固有的低光损耗,然而,由于它们的介电性质,阻碍了纳米天线的光谱调谐。在这里,通过近场纳米显微镜监测,在很宽的光谱范围(≈ 35 cm − 1 ,即共振线宽 ≈ 9 cm − 1 )内实现了声子纳米天线中超窄共振的主动和被动调谐。为此,将由六方氮化硼制成的单个纳米天线放置在不同的极性基底上(例如石英和 4H-碳化硅),或用高折射率范德华晶体 (WSe 2 ) 的层覆盖它,以改变其局部环境。重要的是,通过将纳米天线放置在费米能量变化的门控石墨烯单层顶部,可以实现纳米天线极化子共振的主动调谐。这项工作提出了具有超窄共振的可调极化子纳米天线的实现,可用于主动纳米光学和(生物)传感。
与人类视觉相比,由图像传感器和处理器组成的传统机器视觉由于图像感测和处理在物理上分离,存在高延迟和大功耗的问题。具有大脑启发视觉感知的神经形态视觉系统为该问题提供了一个有希望的解决方案。在这里,我们提出并演示了一种原型神经形态视觉系统,该系统通过将视网膜传感器与忆阻交叉开关联网。我们使用具有栅极可调光响应的 WSe 2 /h-BN/Al 2 O 3 范德华异质结构来制造视网膜传感器,以紧密模拟人类视网膜同时感测和处理图像的能力。然后,我们将传感器与大规模 Pt/Ta/HfO 2 /Ta 单晶体管单电阻 (1T1R) 忆阻交叉开关联网,该交叉开关的作用类似于人脑中的视觉皮层。实现的神经形态视觉系统可以快速识别字母和跟踪物体,表明在完全模拟状态下具有图像感测、处理和识别的能力。我们的工作表明,这种神经形态视觉系统可能会为未来的视觉感知应用开辟前所未有的机会。
摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
最近,在扭曲的WSE 2 Moir´e结构中观察到了超导性(Xia等,Arxiv:2405.14784; Guo等,Arxiv:2406.03418)。它的过渡温度很高,达到了费米温度尺度的百分之几。在这里,我们基于电子拓扑可以在适当的介导相关性方面实现量子波动的概念提出了一种超导性的机制。在此制度中,库仑相互作用要求将主动拓扑平面带和附近的较宽的频带一起考虑在一起。紧凑的分子轨道出现,通过拓扑结构与其他分子轨道进行拓扑杂交经历量子波动。杂交与主动平面带的自然趋势竞争静态序列的自然趋势,从而削弱了后者。我们通过实验将此效果与某些显着的观察联系起来。此外,竞争产生了丢失的量子的量子临界状态。相应的量子临界波动驱动超导性。更广泛的含义和相关材料平台之间的新联系。