层状二维 (2D) 材料主要通过范德华键相互作用,这为不受外延晶格匹配要求约束的异质结构创造了新的机会 [1]。然而,由于任何钝化的、无悬空键的表面都会通过非共价力与另一个表面相互作用,因此范德华异质结构并不仅限于二维材料。具体来说,二维材料可以与多种其他材料(包括不同维度的材料)集成,形成混合维度范德华异质结构 [2]。此外,化学功能化为调整二维材料的性质和异质界面间的耦合程度提供了更多机会 [3]。在本次演讲中,我们将探讨混合维度异质结构在量子光子科学和技术中的前景,特别关注化学功能化如何操纵和增强应变二维过渡金属二硫属化物中的单光子发射 [4]。除了技术含义之外,本次演讲还将探讨几个基本问题,包括能带排列、掺杂、陷阱态以及跨混合维异质界面的电荷/能量转移。
研究的成功是创新的堆叠技术。NTU团队在垂直角度分层两个薄的Nbocl₂平流,使他们能够实现极化纠缠,这是传统上依赖更大,笨重的材料的量子计算的基本要求。根据团队的说法,几十年来,偏振式的光子对一直是量子光学实验的基石,但通常需要更大,较大的材料。使用Van der Waals工程,无需这些大规模设置而无需产生偏振的光子。
p1.1 2d Andreas BeerUniversitätRegensburg接近性诱导的交换交互和动态电荷转移在Mose2/Crsbr van-der-waals异质结构带有正交旋转纹理
mxene作为一种不同的储能系统的电极材料进行了研究。实验结果表明,MXENES作为阳极材料具有出色的循环性能,尤其是在较大的电流密度下。但是,可逆能力相对较低,这是满足工业应用需求的重要障碍。这项工作通过原位方法合成了N掺杂的石墨烯样碳(NGC)插入的Ti 3 C 2 t X(NGC-Ti 3 C 2 t X)van der waals异质结构通过原位方法。所制备的NGC-TI 3 C 2 T X van der waals异质结构用作钠离子和锂离子电池电极。对于钠离子电池,在20 mA g-1的特定电流中实现305 mAh g-1的可逆特异性容量,比Ti 3 C 2 t X X X X的特定电流高2.3倍。对于锂离子电池,在20 mA g-1的特定电流下,可逆能力为400 mAh g-1,是Ti 3 C 2 t X X的1.5倍。由NGC-TI 3 C 2 T X制成的钠离子和锂离子电池都显示出高循环稳定性。理论计算还验证了NGC-TI 3 C 2 O 2系统中电池容量的显着改善,这归因于NGC边缘状态下工作离子的附加吸附。这项工作是一种创新的方式,可以合成新的范德华异质结构,并提供了一条新的途径,以显着提高电化学性能。
在两个半导体之间具有不同类型的掺杂类型的半导体之间的静电仪,是P - N交界处的核心,这是几种电子和光电设备后面的基础,包括校正二极管,光电探测器,光载体 - 诸法索尔细胞以及光 - 发光二氧化碳。1超出了由外延半导体生长制造的传统设备,二维材料的出现(2D材料)引起了人们对范德华P - N交界原型的兴趣。2 - 5虽然这些设备尚未与传统的半导体进行典型应用的效率,但范德华(Van der Waals)具有简化的优势,并且在材料选择方面具有可观的实验性原型。取决于特定c成分的属性,p - n连接
自从在 Cr 2 Ge 2 Te 6 [1] 和 CrI 3 [2] 的单层和双层中发现长程磁序以来,许多单层或几层厚度的(反)铁磁范德华材料已被发现。由于层间和层内交换以及磁各向异性的相互作用导致自旋纹理丰富,它们是自旋电子学的理想平台。许多反铁磁范德华材料在低温下是电绝缘的,这意味着不存在自由载流子引起的磁化衰减。因此,它们对于研究磁序的集体激发,即自旋波及其量子,磁振子 [3, 4] 具有吸引力。传统磁体中的磁振子输运已得到广泛研究,例如,通过自旋泵浦 [5]、自旋塞贝克效应 (SSE) [6] 和电磁振子自旋注入/检测 [7]。反铁磁体赤铁矿 [8]、氧化镍 [9] 和 YFeO 3 [10] 中的长距离磁振子传输已被证实。低阻尼亚铁磁钇铁石榴石 (YIG) 超薄膜是高效磁振子传输的首选材料,它以强烈增强的磁振子电导率形式显示出二维 (2D) 相对于三维 (3D) 传输的有益效应 [11]。温度梯度驱动的磁振子自旋输运 (SSE) [12] 已被报道存在于铁磁和反铁磁范德华材料中 [13, 14]。然而,局部和非局部 SSE 仅提供有关磁振子传输特性的复杂信息。热磁振子电流是由整个样品中的热梯度产生的,因此很难区分磁振子弛豫长度和磁振子自旋电导率 [7, 11]。CrCl 3 [15] 的反铁磁共振揭示了声学和光学磁振子模式的存在,但并未解决它们在自旋输运中的作用。因此,为了评估范德华磁体在自旋电子学应用中的潜力,我们必须研究由微波或我们将在此处展示的电注入局部产生的磁振子的传播。
我们对化学和相关的电子结构进行了全面分析 - 菱形Cr x 3(x = br,cl,i)van der waals散装晶体的构造。使用广义梯度近似加上动态均值字段理论,我们明确地证明了局部动力相关性对于对出现的近相质质量的一致理解和Mott局部电子状态的一致理解的重要性,显示了材料依赖性的单电子GGA Linehape和多孔电子相互作用之间的相互作用。为了探测相关的顺磁性电子状态,我们对CRCL 3和CRBR 3散装晶体进行了X射线吸收光谱(XAS)测量。我们相关的多体研究与了解顺磁性CR-Trihalides晶体的电子结构重建有关,并应广泛适用于其他范德华磁铁材料。
摘要:Van der Waals(VDW)磁铁很有希望,因为它们具有掺杂或合金组成的可调磁性能,其中磁相互作用的强度,它们的对称性和磁各向异性可以根据所需的应用来调节。到目前为止,大多数基于VDW磁铁的自旋设备都限于低温温度,其磁各向异性有利于平面外或倾斜的磁化方向。在这里,我们报告了室温外侧自旋阀设备,其平面内磁化和VDW Ferromagnet的自旋极化(CO 0.15 Fe 0.85)5 GETE 2(CFGT)在异性捕获岩中使用墨烯。密度功能理论(DFT)计算表明,各向异性的幅度取决于CO浓度,是由CO在最外面的FE层中取代引起的。磁化测量结果揭示了上述CFGT中的室温铁电磁作用,并在室温下清除了延迟。由CFGT纳米层和石墨烯组成的异质结构用于实验实现旋转阀装置的基本构件,例如有效的自旋注入和检测。对自旋转运和汉尔自旋进液测量的进一步分析表明,在与石墨烯界面处的界面上具有负自旋极化,并由计算出的CFGT状态的自旋偏振密度支持。在室温下,CFGT的平面磁化证明了其在石墨烯侧旋转式设备中的有用性,从而揭示了其在自旋技术中的潜在应用。关键字:范德华磁铁,自旋阀,石墨烯,范德华异质结构,2D磁铁,平面磁化,自旋极化M
摘要:预计无机晶体在2D材料上的外延生长有望大大推进纳米版和纳米复合材料。但是,由于2D材料的原始表面是化学惰性的,因此很难在2D材料上表现出无机晶体。以前,仅通过在高温下的蒸气 - 相位沉积来实现成功的结果,而基于溶液的沉积(包括自旋涂层)使外延生长在2D材料上不一致,稀疏或不均匀。在这里,我们表明溶剂控制的自旋涂层可以将密集的外延AGCN微管均匀地沉积在各种2D材料上。将乙醇添加到水溶液中,在自旋涂层期间促进了薄的过饱和溶液层的均匀形成,这促进了在块状溶液中均匀核定的2D材料表面上的异质晶体成核。显微镜分析证实了在石墨烯,MOS 2,HBN,WS 2和WSE 2上外延AGCN微管的高度排列,均匀和密集的生长。的外延微管,是光学上可观察到的,化学上可移动的,可以在毫米大小的多晶石墨烯中对晶粒进行晶粒图,以及对van der waals waals异质结构中扭曲角度(<〜1°)的精确控制。除了这些实际应用外,我们的研究还证明了2D材料作为外延模板的潜力,即使在无机晶体的自旋涂层中也是如此。关键字:自旋涂层,外延生长,范德华外延,氰化银,2D材料,范德华异质结构H