在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 该方法于 1951 年开发,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 及其同事最近的研究似乎遵循了与钢材断裂行为基本思想相同的思路,这些基本思想与应力、尖锐缺口和温度变化的影响有关。
在结束我的这部分报告时,我想这样说:根据我的经验,焊接结构的严重使用故障总是以某种脆性断裂告终,无论前述原因是什么 - 焊接缺陷、热变形区裂纹、疲劳裂纹等。因此,我不会低估研究焊接结构钢的脆性行为的重要性,特别是在低温和严重的焊接应力条件下,在最尖锐的缺口 (即自然裂纹) 影响下钢的强度。如今,有许多方法可以应用于此类研究,其中之一就是 NC 测试。8 此方法是在 1951 年开发的,用于确定焊接接头周围钢材的“标称解理强度”(附录 B)。Pelliru 和同事最近进行的研究似乎遵循了与钢材断裂行为与应力、尖锐缺口和不同温度的影响相关的基本思想相同的思路。
裂纹抑制器增强型铝制海洋结构的新设计和性能评估工具 1.0 目标。 1.1 本研究项目的目标是改进现有的建模能力,以有效可靠地捕捉裂纹抑制器对焊接铝制海洋结构疲劳和断裂性能的影响,并探索裂纹抑制器的最佳设计以满足设计要求。在恶劣的操作环境下设计大型铝制高速船需要焊接结构能够承受制造缺陷和服务引起的缺陷的亚临界增长而不会失效。研究表明,可以通过插入局部高断裂韧性材料或降低裂纹扩展驱动力来阻止裂纹扩展。由于缺乏用于铝结构的裂纹抑制器设计程序,因此无法选择最佳的机械抑制器装置来在裂纹达到临界状态之前阻止其扩散。本研究的目的是开发和实施一种新型计算工具,用于模拟存在裂纹抑制器、残余应力和焊接引起的材料异质性和非线性的情况下焊接铝制海洋结构的曲线裂纹扩展及其相关的残余强度和寿命。 2.0 背景。 2.1 当前和未来船舶制造商对重量和性能的需求要求最佳的轻质铝制船舶
热塑性复合材料(TPC)材料和过程的成熟度已提高到实际的重量,成本和效率益处,以实现更可持续的飞机。这包括诸如Clean Sky的多功能机身演示器(MFFD),Collins的下一代Nacelle,Daher的TBM飞机的全尺度扭转盒以及GKN Fokker正在进行的更大,焊接/集成结构的持续工作,例如Fuseelage Panels,例如Fuseelage Panels。它还包括
与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示如何从单轴疲劳试验数据中获得多轴疲劳寿命预测。最后,建议开展研究以促进多轴疲劳研究向海洋结构的技术转移。
· 用于模拟的材料疲劳数据 · 涂层、隔膜和袋复合材料的压缩性 · 涂层电极的弯曲刚度 · 电池箔、隔膜和袋复合材料的拉伸强度 · 焊缝和粘合处的接头质量 · 涂层的硬度和划痕性能 · 电极涂层的附着强度和质量 · 涂层表面的摩擦系数 · 隔膜和袋箔的抗穿刺性 · 温度或介质等环境条件下的材料特性
管道、管线管:各等级的无缝和焊接管道(IBR 和非 IBR)、油井管和钻杆、对焊管件、承插焊管、螺纹管件:弯头、回弯头、直通和减径三通、四通、搭接接头短管、减径器、接头、管帽、衬套、塞子、奶嘴、联轴器、螺纹管接头、焊接管接头、弯头等。法兰和锻件:WNRF、SORF、SOFF、BLRF、SWRF、搭接接头、WNRTJ、BLRTJ、盲板、铲形管等。对焊管件:弯头、三通、减径器、短管、回弯头、管帽、管颈等。长半径弯头:5 毫米内 ½”NB 至 32”NB至 50 毫米厚半径 2.5 D / 3 D / 5D / 10 D 最高 22D 用于清管器发射蒸汽和通用配件。板材/片材/线圈/圆棒:CromeMoly(SA387 Gr.11/22/91/5)镍和镍合金/低碳钢/锅炉质量/ Corton / Hardox / Dillidur 400v / Sailma / 船舶建造获得船级社批准等。铜/白铜(CuNi)/黄铜/青铜/海军黄铜造船用紧固件和垫圈产品:如螺母、螺栓、螺柱、垫圈等。
在土木工程和运输工具中,AHSS 钢发挥着重要作用 [1÷5]。为了提高车辆支撑结构元件的可用性,目标是在保持车辆重量的同时提高其强度。使用 AHSS 钢等新材料需要对这些元件的连接技术进行变革。首先,传统的焊接方法无法获得预期的效果,即获得耐用且高强度的焊接接头,其抗拉强度接近原生材料的抗拉强度。所分析的由 AHSS 钢制成的结构元件的强度高达 1200 MPa,比 MAG 工艺中获得的焊缝强度高出约 40%。首次决定检查新开发的使用微喷射冷却的技术是否适用于焊接 DOCOL 1200M 钢,是否会影响焊接接头的可用质量,最重要的是,提高获得的焊缝的抗拉强度 [6,7]。本文旨在介绍选定的测试结果及其分析,以选择新开发的用于连接由 AHSS(先进高强度钢)制成的移动平台元件薄壁结构的技术的焊接参数。
与焊接海洋结构相关的环境载荷和结构几何形状通常会产生多轴应力。大型焊接细节已用于表征海洋结构中的多轴疲劳响应;然而,这些测试的成本通常过高。对多轴疲劳文献进行了审查,以确定可用于预测多轴疲劳响应的分析技术。确定并总结了各种方法。参考了支持文献。在可用的情况下介绍了多轴方法的可靠性(偏差和散度)。确定了影响多轴疲劳响应的各种因素。以焊接细节为例,展示如何从单轴疲劳试验数据中获得多轴疲劳寿命预测。最后,建议开展研究以促进多轴疲劳研究向海洋结构的技术转移。