交通事故仍然是死亡,伤害和高速公路严重中断的主要原因。理解这些事件的促成因素对于提高道路网络安全性至关重要。最近的研究表明,预性建模在洞悉导致事故的因素方面具有效用。但是,缺乏重点放在解释复杂的机器学习和深度学习模型的内部工作以及各种特征影响事故词典模型的方式。因此,这些模型可能被视为黑匣子,而利益相关者可能不会完全信任他们的发现。这项研究的主要目的是使用各种转移学习技术创建预测模型,并使用Shapley值对最有影响力的因素提供见解。预测合格中伤害的严重程度,多层感知器(MLP),卷积神经网络(CNN),长期短期记忆(LSTM),残留网络(RESNET),EfficityNetB4,InceptionV3,InceptionV3,极端的Incep-Tion(Xpection)(Xpection)(Xpection)和Mobilenet和Mobilenet。在模型中,MobileNet显示出最高的结果,精度为98.17%。此外,通过了解不同的特征如何影响事故预测模型,研究人员可以更深入地了解导致事故的造成的范围,并制定更有效的干预措施以防止发生事故。
可解释人工智能 (XAI) 在使人类理解和信任深度学习系统方面发挥着至关重要的作用。随着模型变得越来越大、越来越普遍,并且在日常生活的各个方面都无处不在,可解释性对于最大限度地减少模型错误的不利影响是必不可少的。不幸的是,以人为中心的 XAI 中的当前方法(例如医疗保健、教育或个性化广告中的预测任务)倾向于依赖于单个事后解释器,而最近的研究发现,当应用于相同的底层黑盒模型实例时,事后解释器之间存在系统性分歧。因此,在本文中,我们呼吁采取行动来解决当前最先进解释器的局限性。我们建议从事后可解释性转向设计可解释的神经网络架构。我们确定了以人为中心的 XAI 的五个需求(实时、准确、可操作、人类可解释和一致),并提出了两种可解释设计神经网络工作流程的方案(使用 InterpretCC 进行自适应路由和使用 I2MD 进行时间诊断)。我们假设以人为中心的 XAI 的未来既不在于解释黑匣子,也不在于恢复传统的可解释模型,而在于本质上可解释的神经网络。
随着智能手机、物联网、汽车和无人机控制系统等复杂网络设备的兴起、操作系统和文件格式的激增、无处不在的加密、使用云进行远程处理和存储以及法律标准的出现,网络取证 (CF) 面临着许多新的挑战。例如,智能手机上运行着数十个系统,每个系统都有数百万个可下载的应用程序。筛选这些大量数据并使其有意义需要新技术,例如来自人工智能 (AI) 领域的技术。为了在 CF 中成功应用这些技术,我们需要向 CF 的利益相关者(例如法医分析师和法院成员)证明和解释结果,以便他们做出明智的决定。如果我们想在 CF 中成功应用 AI,就需要培养对 AI 系统的信任。接受在 CF 中使用 AI 的其他一些因素是使 AI 真实、可解释、可理解和可交互。这样,AI 系统将更容易被公众接受并确保与法律标准保持一致。可解释的人工智能 (XAI) 系统可以在 CF 中扮演这一角色,我们将这样的系统称为 XAI-CF。XAI-CF 不可或缺,目前仍处于起步阶段。在本文中,我们探讨并论证了 XAI-CF 的意义和优势。我们强烈强调构建成功且实用的 XAI-CF 系统的必要性,并讨论了此类系统的一些主要要求和先决条件。我们对 CF 和 XAI-CF 这两个术语进行了正式定义,并对之前应用和利用 XAI 来建立和增加对 CF 的信任的研究进行了全面的文献综述。为了让读者熟悉本文的研究,除了背景之外,我们还对过去十年在 XAI 和 CF 中开展的工作进行了批判性和简短的回顾。我们讨论了 XAI-CF 面临的一些挑战,例如对抗性攻击、偏见管理、过度简化、CF 和 AI 鸿沟以及人机交互。我们还针对这些挑战提供了一些具体的解决方案。我们确定了为 CF 构建 XAI 应用程序的关键见解和未来研究方向。本文旨在探索和让读者熟悉 XAI 应用程序在 CF 中的作用,我们相信我们的工作为未来对 XAI-CF 感兴趣的研究人员提供了有希望的基础。
工程学院NAVSAHYADRI小组,A/P Naigoan Tal:Bohr Dist。:浦那平码:412213摘要:经常讨论可解释的人工智能,与深度学习有关,并在脂肪中起重要作用 - 公平,问责制和透明度 - ML模型。XAI对于想要在实施AI时建立信任的组织很有用。XAI可以帮助他们了解AI模型的行为,从而帮助找到诸如AI偏见之类的潜在问题。xai反驳了机器学习的“黑匣子”趋势,即使是AI的设计师也无法解释为什么它做出了特定的决定。XAI帮助人类用户了解AI和机器学习(ML)算法背后的推理以提高其信任。AI中使用的机器学习(ML)算法可以归类为“ White-Box”或“ Black-Box”。 白色框模型提供了域专家可以理解的结果。 另一方面, Black-Box模型也很难解释,即使域专家也几乎无法理解。 XAI算法遵循透明度,解释性和解释性的三个原则。AI中使用的机器学习(ML)算法可以归类为“ White-Box”或“ Black-Box”。白色框模型提供了域专家可以理解的结果。Black-Box模型也很难解释,即使域专家也几乎无法理解。XAI算法遵循透明度,解释性和解释性的三个原则。
摘要 - 机器学习的许多形式(ML)和人工智能(AI)技术在通信网络中采用以执行所有优化,安全管理和决策任务。而不是使用常规的黑框模型,而是使用可解释的ML模型来提供透明度和问责制。此外,由于网络的分布性和安全隐私问题,联合学习(FL)类型ML模型比典型的集中学习(CL)模型变得越来越流行。因此,研究如何使用可解释的AI(XAI)在不同的ML模型中找到解释能力是非常及时的。本文在网络中使用XAI在CL和FL的异常检测中进行了全面分析。我们将深层神经网络用作黑框模型,其中两个数据集,即UNSW-NB15和NSL-KDD,以及Shapley添加说明(SHAP)作为XAI模型。我们证明,FL的解释与客户端异常百分比不同。索引术语-6G,安全性,隐私,可解释的AI,中央学习,联合学习。
Hendricks, LA、Burns, K.、Saenko, K.、Darrell, T.、Rohrbach, A. (2018)。女性也玩单板滑雪:克服字幕模型中的偏见。收录于:Ferrari, V.、Hebert, M.、Sminchisescu, C.、Weiss, Y. (eds) 计算机视觉 – ECCV 2018。ECCV 2018。计算机科学讲义 (),第 11207 卷。Springer, Cham。https://doi.org/10.1007/978-3-030-01219-9_47
• 欧盟关于人工智能法案的提议:“用于评估自然人信用评分或信用度的人工智能系统应归类为高风险人工智能系统,因为它们决定了这些人获得金融资源或住房等基本服务的机会[…]”
©作者。2023 Open Access本文均在创意共享归因4.0国际许可下获得许可,该许可允许以任何媒介或格式的使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,并提供了与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。