由于预计会产生伪影和噪声,因此在 EEG 实验中通常会避免自由凝视和移动图像。然而,对于越来越多的研究问题来说,放宽这些严格的限制将是有益的。其中包括对视觉审美体验的研究,这通常涉及对高度可变的刺激进行开放式探索。在这里,我们系统地比较了保守与更自由的实验设置对审美评级任务中各种行为、大脑活动和生理指标的影响。我们的主要目的是评估 EEG 信号质量。43 名参与者要么保持注视,要么被允许自由凝视,并观看静态图像或由舞蹈表演或自然场景组成的动态(视频)刺激。添加了被动听觉背景任务(听觉稳态响应;ASSR)作为整体 EEG 记录质量的代理指标。我们记录了 EEG、ECG 和眼动追踪数据,参与者在每次试验中对他们的审美偏好和无聊状态进行评分。尽管行为评分和凝视行为都受到任务和刺激操纵的影响,但 EEG SNR 几乎不受影响,并且在所有条件下通常都很稳定,尽管只有最低限度的预处理并且没有试验拒绝。特别是,我们表明使用视频刺激不一定会导致 EEG 质量降低,相反,它可以显著减少眼球运动,同时增加参与者的审美反应和一般任务参与度。我们认为这些结果是令人鼓舞的,表明——至少在实验室中——可以采用更自由的实验条件,而不会显著降低信号质量。
摘要:净初级生产力(NPP)可以间接反映植被的CO 2固定能力,但是由于气候变化和人类活动的影响,其时空动力学在某种程度上会发生变化。在这项研究中,NPP被用作研究中国长江盆地(YRB)重要生态系统中素食碳能力变化的指标。我们还探讨了NPP对气候变化和人类活动的反应。我们对2003年至2020年YRB生态系统内NPP的时间动力学和空间变化进行了全面分析。此外,我们还采用了剩余分析来定量评估气候因素和人类活动对NPP变化的贡献。研究发现如下:(1)在18年期间,盆地内的平均NPP为543.95 GC/m 2,显示出明显的向上趋势,增长率约为3.1 GC/m 2; (2)在NPP中表现出越来越多的趋势的区域占研究总区域的82.55%。盆地稳定性相对较高的区域占总面积的62.36%,而稳定性低的区域占2.22%,主要位于西丘阿平原的亨格登山脉; (3)NPP的改善是由人类活动和气候变化共同驱动的,人类活动对NPP的增长更为重要。特别是,贡献总计为65.39%,人类活动贡献了59.28%,气候变化贡献了40.01%。本研究提供了对人类活动和气候变化对植被生产率的贡献的客观评估,为未来的生态系统发展和环境计划提供了关键见解
摘要:驾驶舱监控不力已被确定为导致航空事故的重要因素。因此,改进飞行员的监控策略有助于提高飞行安全性。在两个不同的环节中,我们在全飞行模拟器中分析了专业航空公司飞行员的飞行性能和眼球运动。在预训练环节中,20 名飞行员以飞行员飞行 (PF) 的身份执行了手动进近场景,并根据其飞行性能分为三组:不稳定、标准和最准确。不稳定的飞行员对各种仪器的关注不足或过度。他们的视觉扫描模式数量低于设法稳定进近的飞行员。最准确的飞行员表现出更高的感知效率,注视时间更短,对重要主要飞行仪表的注视更多。大约 10 个月后,14 名飞行员返回进行后续训练。他们接受了一项短期培训计划,并执行了与预训练课程类似的手动方法。其中七人(实验组)收到了关于他们自己的表现和视觉行为(即在预训练课程期间)的个人反馈,以及从最准确的飞行员那里获得的各种数据,包括一段眼动追踪视频,其中显示了最准确的飞行员之一的有效视觉扫描策略。另外七人(对照组)收到了有关驾驶舱监控的一般指导。在训练后阶段,实验组的飞行表现更好(与对照组相比),其视觉扫描策略与最准确的飞行员的视觉扫描策略更加相似。总之,我们的结果表明,驾驶舱监控是手动飞行性能的基础,并且可以使用主要基于高度准确的飞行员的眼动示例的训练计划来改进它。
植物生长促进性根瘤菌(PGPR)是居住在根际的细菌,并定居于根环境。这些生物可用于改善植物的生长和在不利环境下农业生产的可持续性。根际微生物可以产生细胞外化学信号,有助于在宿主和微生物之间建立复杂的信号网络。PGPR殖民植物根,启发植物生长,并减少昆虫引起的疾病或损伤。目前已经对PGPR进行了丰富的研究工作,其中许多正在用于农作物中。pgpr可以用作在压力环境下改善植物健康和产量的生物肥料。生物施肥被认为是全球不同作物植物的主要氮来源。同样,PGPR负责增加豆类中的N-固定,促进自由生活的N-固定细菌,并改善根际中补充营养素的可用性和分布(Daniel等,2022)。他们还负责植物激素的产生,因此在植物正常生长和发育中起着至关重要的作用。PGPR降低了根际根部病原体和其他有害微生物的居民,从而促进植物的生长。微生物参与宿主植物代谢组途径的改变,从而有助于植物的全身耐药性。它们有助于上调压力响应性的继发代谢产物,从而有助于调节细胞代谢活性。)。但是,更好地了解其作用机理以及它们在植物生长和发展中的主演作用对于农业生产和研究至关重要。已经研究了Rhodopseudomonas palustris菌株PS3增强了番茄植物的生长和产量。菌株还显着改善了土壤养分含量和番茄果实的质量。这些有利的细菌群落有效地有助于改善结果,产量和土壤健康(Lee等人。
植物 - 微生物相互作用的领域正在迅速发展,随着生物技术和生物工程的进步,我们正处于释放农业,环境可持续性和健康科学方面的新机会。微生物生物技术与植物系统的整合具有革新作物生产力,营养效率,病原体抗性和气候弹性的潜力。随着研究的继续,生物技术干预措施是针对全球挑战的创新解决方案,例如粮食安全,生态系统退化和可持续的能源生产。本社论探讨了植物 - 微生物生物技术的最新进步,重点是农业中的微生物应用,生物工程突破以及这种动态场的未来轨迹。微生物群落对于植物健康和发育至关重要,并与根际中的植物根相互作用,以促进营养摄取,增强胁迫耐受性并预防病原体。有益的植物相关微生物,例如磷酸盐溶解的微生物(PSM)和氮固定细菌,正在越来越多地探索以减少对化学肥料的依赖并促进可持续的农业(Jain等人。; Pang等。)。磷是植物生长的关键元素,但是由于它倾向于与钙,铁或铝形成不溶性化合物,因此在土壤中通常无法使用。psms通过分泌溶解这些结合化合物的有机酸来增强磷的可用性,从而使磷可供植物进入(Pang等人。)。)。)。芽孢杆菌,假单胞菌和曲霉物种可以显着增加磷的摄取并改善植物的生长和产量(Jain等人。共生细菌,例如根瘤菌,勃arad骨和硫唑群,通过将大气氮转化为氨可以使用,在氮固定中起着至关重要的作用,植物可以使用。这种自然过程减少了对合成氮肥的需求,从而促进了农业和环境可持续性(Pang等人。将这种微生物功能整合到农业系统中可以提高作物产量,减少化学投入并发展弹性的农业系统。
蓝细菌是唯一能够进行氧合光合作用的原核生物。许多蓝细菌菌株可以生活在不同的营养模式下,从光自营养和异养性到综合营养的生长。然而,允许这些生活方式之间的灵活切换的调节机制知之甚少。作为Ca-Benson-Bassham(CBB)周期和分解代谢糖降解途径中CO 2的合成代谢固定,需要密集的调节网络,以启用同时进行的反对代谢流动物。最近将Entner-Doudoroff(ED)途径视为一种糖酵解途径,该糖酵解途径与糖原崩溃中的其他途径合作。尽管通过ED途径低碳浮标,但在ED途径中对突变体的代谢分析表明,表现出明显的表型,表明该途径的强烈调节作用。小的CP12蛋白通过抑制磷酸氨基胰蛋白酶和3-磷酸甘油醛脱氢酶来下调黑暗中的CBB循环。对具有CP12变体菌株的代谢组和氧化还原水平分析的新结果扩展了CP12调节在昼夜条件下对适应外部葡萄糖供应的已知作用,以及在光中对CO 2水平的发挥作用。此外,碳和氮代谢与维持必不可少的C/N稳态密切相关。小蛋白质PIRC被证明是磷酸甘油酸突变酶的重要调节剂,该酶将这种酶鉴定为CBB循环降低糖酵解的碳分配的中心分支点。在氮饥饿实验期间,突变体D PIRC的代谢物水平改变了这种调节机制。在关键的代谢分支点调节碳分配的新机制可以确定碳流向所需化合物的靶向重定向的方法,从而有助于进一步建立蓝细菌作为绿细胞工厂,作为生物技术应用,并同时利用日光和co2。
摘要。微生物从土壤到大气的微生物释放,反映了环境条件如何影响土壤有机物(SOM)的性能,尤其是在大量有机的生态系统中,如Qinghai – Tibetan Plateau(QTP)等大型有机物生态系统。放射性碳(14 C)是全球碳循环的重要示踪剂,可用于通过估计碳固定和呼吸之间的时间滞后来理解SOM动力学,通常通过年龄和过境时间等指标进行评估。在这项研究中,我们在四个温度(5、10、15和20°C)和两个水上填充的孔隙空间(WFPS)水平(60%和95%)下融化了泥炭地和草原土壤,并测量了散装土壤和异育呼吸的14 C标志。我们比较了批量土壤的14 c与呼吸碳的1 14 CO 2之间的关系,这是两种土壤的温度和WFP的函数。为了更好地解释我们的结果,我们使用了数学模型来分析计算的池数字,碳(K)的分解速率,转移(α)和分配(γ)系数如何影响1 14 c组和1 14 CO 2的关系,以及各自的平均年龄和平均年龄和平均年龄和平均值交通时间。从我们的孵化中,我们发现散装中的14个c谷物和来自泥炭地的Co 2比草原土壤的耗尽(旧)要大得多(古老)。我们的结果表明,温度的变化不会影响两种土壤中异养的呼吸CO 2的1 14 c瓣膜。然而,WFP的变化对基层土壤中的14个CO 2的影响很小,并且在泥炭地土壤中具有显着影响,在泥炭地土壤中,较高的wfps水平导致较高的水平导致1 14 CO 2的枯竭。在我们的
冷适应的微生物可以繁衍并定居地球上可用的每个低温栖息地,包括极地区域,非极性山脉和深海环境。它们是这种极端栖息地的先驱殖民者之一,可能包括多种古细菌,细菌,真菌,藻类和其他微核生物。这些微生物显示出对农业环境可持续性的巨大生态,农业和生物技术潜在的应用。它们是商业上重要的防冻剂化合物(Eskandari等,2020),冷活动酶,冷休克蛋白(Mesbah,2022)和代谢产物(Styczynski等,2022)。冷适应的微生物,以促进植物生长,生物修复和废物管理(Suyal等,2022; Kour和Yadav,2023)。精神病微生物已使用多种机制适应在低温条件下生存。在分子和生物化学水平上进行了几种适应,有助于精神分裂和基质营养的微生物,在寒冷环境中盛行的多种非生物胁迫下进行重要的细胞过程(图1)。冷适应的农业重要的微生物是“农业化学物质的成本效率和环境友好的替代品(Rawat et al。,2019; Goel等,2022)。从这些冷栖息地中鉴定出了节肢动物,芽孢杆菌,Paenibacillus,Paenibacillus,Pseudomonas和Rhodococcus(Soni等,2015; Joshi等,2019)。他们已经显示出多功能性状,包括大气氮固定,磷溶解,铁载体的产生,钾溶解和动员,植物激素的产生以及其他植物性活性(Suyal et al。,2022)。然而,没有充分探索冷适应的微生物出于农业目的的全部潜力。因此,必须对其植物生长促进能力,社区结构和时间以及空间领域试验进行详细研究。
氮(N)的可用性限制了许多森林生态系统的主要生产率,尤其是北方和温带地区的生态系统(Lebauer and Treseder,2008; Du等,2020a)。可用的n来自通过土壤N矿化和叶子N吸收的内部循环,以及通过生物膜固化,大气N沉积和基岩风化的外部输入(Cleveland等,2013; Du and de Vries,2018; Morford et ef and。作为外部N输入,N沉积刺激植物的生长,从而增加许多陆地生态系统的C固结,尤其是在一个持续存在大气CO 2浓度的世界中(De Vries等,2014; O''Sullivan et al。自从工业革命伴随着人为n排放和沉积的工业革命以来,全球n个周期已被Human活动发生了巨大变化(Galloway等,2008,2021)。已经发现大量N排放会导致严重的空气污染(例如雾霾,酸雨和臭氧),并导致负面的生态影响(例如生物多样性丧失,酸性,酸性),当时是在各种生态系统中沉积到各种生态系统中,两者都在当前的热点地区,主要发生在East and South Asia和South Aseborions和北方地区,欧洲;等人,2010年;这些负面影响引起了从1980年代,1990年代的美国和2010年代的中国遏制欧洲国家排放的政策(Amann等,2013; Li等,2017; Zheng等,2018)。因此,n沉积在
叶绿素荧光发射是由吸收的光能引起的,这些光能不会以热量的形式消散,也不会用于植物的光合作用反应。光合作用分为两个不同的部分,即光反应和二氧化碳 (CO 2 ) 固定。在光反应中,光能被用来生成氧化蛋白质复合物,该复合物能够在光系统 II (PSII) 中从水中提取电子,同时重新激发提取的电子以还原光系统 I (PSI) 中的 NADP +。这些“光收集”反应导致 ATP 和还原力(还原铁氧还蛋白和 NADPH)的形成,随后通过卡尔文 - 本森 - 巴沙姆循环进行 CO 2 固定。叶绿素 a 荧光分析可以确定直接用于光化学的吸收光能量,并估计生物或非生物胁迫下的光合作用效率 ( Moustakas 等人,2021 年;Moustakas,2022 年)。叶绿素 a 荧光信号可以根据光合作用活性进行解释,以获得有关光合作用机构状态的信息,尤其是光系统 II (PSII) 的状态信息 ( Murchie 和 Lawson,2013 年;Moustakas 等人,2021 年)。叶绿素荧光测量已广泛用于探测光合作用机制的功能和筛选不同作物以耐受各种压力和营养需求(Guidi 和 Calatayud,2014 年;Kalaji 等人,2016 年;Sperdouli 等人,2021 年;Moustakas 等人,2022a 年)。使用脉冲幅度调制 (PAM) 方法可以主要计算引导至 PSII 进行光化学反应的吸收光能量,这些能量通过非光化学猝灭 (NPQ) 机制以热量形式耗散或通过不太明确的非辐射荧光过程耗散,分别标记为 F PSII 、F NPQ 和 F NO ,它们的总和等于 1(Kramer 等人,2004 年)。在本研究中,我们总结了本期特刊中的文章,为读者更新了该主题,并讨论了叶绿素荧光的当前应用