摘要:由于充电时间短,电动汽车 (EV) 的超快速充电 (XFC) 近来兴起。然而,XFC 站的电动汽车超高充电功率可能会严重影响配电网。本文讨论了当前配电网中 XFC 站充电功率需求的估计以及使用可再生能源的多个 XFC 站的设计。首先,利用从车辆行驶调查数据集中获得的电动汽车到达时间和充电状态 (SOC) 分布创建了一个蒙特卡洛 (MC) 模拟工具。考虑各种影响因素以获得对 XFC 站充电功率需求的实际估计。然后,提出了一种确定配电网中多个 XFC 站的储能系统 (ESS) 的最佳能量容量、ESS 额定功率和光伏 (PV) 板尺寸的方法,目的是实现最佳配置。最佳功率流技术应用于此优化,以便最佳解决方案不仅满足充电需求,还满足与 XFC、ESS、PV 板和配电网相关的运行约束。用例的仿真结果表明,提出的MC仿真可以估计近似现实世界的XFC充电需求,并且配电网中多个XFC站中优化的ESS和PV单元可以降低XFC站的年总成本并提高配电网的性能。
增加车辆电气化将需要大量使用极端充电(XFC),尤其是对于较大的车辆。不协调的XFC可以创建网格挑战,尤其是在分销级别。两种策略可以支持广泛的XFC:×广泛的网格升级(即,升级所有系统以实现最坏情况,完全重合的负载)或集成计划以基于利用负载灵活性和分配能源资源的高级控制和分配能源的高级控件来协调智能系统。
与汽油汽车 (GC) 相比,电动汽车更加环保、节能且经济。然而,当前电动汽车的一个突出缺点是电池从空电状态到充满电需要很长的等待时间,而给 GC 充满电只需几分钟。在此背景下,美国能源部提出了“极限快速充电” (XFC) [2],具体要求充电时间为 15 分钟(4C 速率),以确保电动汽车的大规模普及。到目前为止,使用石墨负极和碳酸亚乙酯 (EC) 基电解质的商用 LIBs 不可能在没有锂镀层的情况下实现 XFC,因为与 Li/Li + 相比,石墨的工作电位在高倍率下很容易降至 0 V。[3] 人们进行了无数的尝试致力于石墨的结构改性以提高倍率性能,例如降低曲折度 [4] 和增加孔隙率。 [5] 然而,由于电池能量密度不可避免地会降低,这些以高功率换取低能量密度的尝试并不适合实际应用。另一方面,加速本体电解质中的 Li + 传输过程似乎是实现高动力学的有效方法 [6],而不会牺牲能量密度。低粘度的脂肪族酯 [7] 被用作