摘要:甲状腺激素(Th)对于正常的脑发育,影响神经细胞分化,迁移和突触发生至关重要。在环境中发现了多种内分泌中断化学物质(EDC),这引起了人们对它们对TH信号的潜在影响以及对神经发育和行为的影响的关注。虽然大多数对EDC的研究都研究了单个化学物质的影响,但人类健康可能会受到化学物质混合物的不利影响。EDC暴露对人类健康的潜在后果是深远的,包括免疫功能,生殖健康和神经系统发展的问题。我们假设胚胎暴露于化学物质的混合物(含有酚,邻苯二甲酸盐,农药,重金属和含氟氧化,多氯化和多溴化合物)中,如在人羊膜流体中通常发现的,可能会导致大脑发育的改变。我们评估了其对两栖动物模型(Xenopus laevis)对甲状腺破坏高度敏感的影响。将受精卵暴露于TH(甲状腺素,T 4 10 nm)或羊膜混合物(在实际浓度下),直到达到NF47期,我们在其中使用RT-QPCR和RNA测序分析了thep tadpoles的基因表达。结果表明,尽管存在Th依赖性基因的某些重叠,但T 4和混合物具有不同的基因特征。免疫组织化学显示,在T 4处理的动物的大脑中增殖增加,而羊膜混合物没有观察到差异。此外,我们证明了t端的运动能力减少,以响应T 4和混合物暴露。由于组成混合物的各个化学物质被认为是安全的,因此这些结果突出了检查混合物以改善风险评估的影响的重要性。
8:45-9:00 Nikko-Ideen Shaidani(海洋生物实验室)Xenopus 突变资源 9:00-9:15 Annie Godwin(朴茨茅斯大学)欧洲 Xenopus 资源中心 (EXRC) 更新和优先事项 9:15-9:30 Aaron Zorn(辛辛那提大学)Xenbase:基因组注释改进 9:30-9:45 Katie Stein(NIH)NIH 对 Xenopus 研究的资助和资源 9:45-10:00 Jacques Robert(罗彻斯特大学)Xenopus 免疫生物学研究资源(XRRI):新的遗传工具和对微塑料水污染物生物影响的主导努力 10:00-10:15 Gary Gorbsky(俄克拉荷马医学研究基金会)扩展工具集:创建新的 Xenopus laevis 和 Xenopustropicis 细胞系及其在基因编辑中的应用 10:15-10:30 Dominique Alfandari (马萨诸塞大学阿默斯特分校) 生产针对非洲爪蟾、墨西哥钝口螈和小鼠的新型单克隆抗体以提高严谨性和可重复性 10:30-10:45 Doug Houston (爱荷华大学) DSHB:通过开放科学共享单克隆抗体 10:45-11:00 咖啡休息
摘要我们先前已经描述了在成年爪诺司纳布斯Laevis神经系统中仅表达的几个基因的分离,并在神经诱导后不久在胚胎中激活。这些cDNA的一个24-15的序列将相应的蛋白质识别为(Na',K+-ATPase的3个亚基[ATP磷酸化水酶(Na+/ K+-transporting); EC 3.6.1.37]。这种形式与先前所描述的(31个爪蟾亚基)不同,蛋白质序列比较表明它不是哺乳动物的青蛙同源物(82个亚基;因此,我们将24-15蛋白称为(na',na',k+-Atpase的33个亚基。抗血清针对(83个亚基融合蛋白检测到成人脑提取物中的蛋白质,其大小和特性是Na',K+-ATPase(3个亚基。在Xenopus中(31和33个亚基表示为相似水平的母体mRNA;在胚胎发生期间快速积累(33个mRNA在第14阶段开始(早期神经拉拉),快速积累(31个mRNA在阶段开始,在23/24阶段。反义RNA探针与t骨脑切片的原位杂交表明(33个亚基在整个发育中的大脑中表达。我们建议(33是主要的Na',K+-ATPase(在青蛙早期神经系统发育过程中存在8个亚基。
在纽约州罗切斯特大学微生物学和免疫学系的雅克·罗伯特博士的实验室(https://wwwwwwwww.urmc.rochester.edu/labs/labs/robert.aspx)中,可以在博士学和免疫学系实验室中获得使用两栖动物作为实验生物,对病原体(例如病毒和分枝杆菌)的耐产生免疫反应。 该项目涉及基因组学,转录组学,重组蛋白设计和表达,以及反向遗传方法(CRISPR/CAS9基因组编辑和转化的RNA干扰)以及插入式成像。 候选人将有机会参与学生的监督和Xenopus laevis研究资源的管理(https://www.urmc.rochester.edu/mbi/mbi/resources/xenopus-laeevis/)。使用两栖动物作为实验生物,对病原体(例如病毒和分枝杆菌)的耐产生免疫反应。该项目涉及基因组学,转录组学,重组蛋白设计和表达,以及反向遗传方法(CRISPR/CAS9基因组编辑和转化的RNA干扰)以及插入式成像。候选人将有机会参与学生的监督和Xenopus laevis研究资源的管理(https://www.urmc.rochester.edu/mbi/mbi/resources/xenopus-laeevis/)。
Jacques Robert博士博士是Albert&Phyllis Ritterson教授兼微生物学和免疫学主席,也是罗切斯特大学环境医学教授。他是Xenopus免疫生物学研究资源的主任,该研究资源是世界上最全面的设施,专门研究Xenopus laevis进行免疫学研究。罗伯特博士的团队研究了免疫系统的发展以及对病毒和细菌的免疫反应,使用两栖动物作为与人类健康相关的动物模型。他的实验室还对水污染物(例如微塑料)对免疫系统发展和整个生命周期的抗病毒免疫的长期影响感兴趣。在实验室外,罗伯特博士喜欢野生动植物,远足,排球,雷丁,并且对歌剧和古典音乐充满热情。这项工作得到了安大略湖微型塑料中心(LOMP)的部分支持,该中心由罗切斯特大学和罗切斯特理工学院共同主持,并由国家环境健康科学研究所(P01 ES035526)和国家科学基金会(OCE-2418255)的海洋和人类健康计划。lomp是研究,翻译和社区参与的枢纽,围绕着不同类型的塑料如何进入和移动大湖生态系统以及微塑料在不同气候条件下如何影响人类健康。在www.lomp.urmc.edu上了解更多信息。上次更新了12/5/24。
时空生物电态调节胚胎发生的多个方面。一个关键的开放问题涉及特定的多细胞电势模式如何差异激活器官发生所需的不同下游基因。要理解空间生物启示模式,遗传学和形态之间关系的信息处理机制,我们专注于Xenopus ectoderm中的特定时空生物启用模式,以调节胚胎脑构图。我们使用机器学习设计了胚胎脑形态发生的最小但可扩展的生物电遗传学动力学网络模型,该模型定性地概括了先前的实验观察结果。该模型的因果整合分析揭示了与空间生物电和基因表达模式相关的简单高阶时空信息整合机制。该机制的具体方面包括因果分配(某些细胞位置对于集体决策更重要),信息不对称性(降压细胞比超极化细胞更具影响力),长距离影响(细胞中的基因对远方细胞的伏特效应非常敏感),并且劳动力敏感(不同的基因对不同的基因均具有敏感的基因)。该机制的不对称信息处理特征使该模型预测了调节正常胚胎脑发育的生物电预制预图中意外的可塑性和鲁棒性程度。我们的体内实验通过Xenopus胚胎中的分子操作验证了这些预测。这项工作表明了使用最小的硅方法中的力量大幅度降低体内参数空间,从而使硬生物学问题可进行。这些结果提供了对指导大规模形态发生的生物电力刺激的整体决策过程的见解,这表明了生物医学干预措施的新应用以及用于合成生物工程的新工具。
3周实验室课程(2021年9月 + 2022年9月):遗传学:创建基因组文库和免疫功能屏幕;细胞生物学:爪蟾卵母细胞和永生细胞的培养,细胞同步,蛋白质印迹,免疫荧光;生物化学:在计算机克隆中,重组蛋白的纯化;发育生物学:秀丽隐杆线虫(父亲成分的命运),斑马鱼,异武(胚胎轴,体外胃肠道),鸡肉,果蝇(转基因胚胎分析),小鼠(胚胎培养,器官,器官,器官,器官文化,转基因胚胎)理论(20221年10月2022年):2022年1月2022年):发育和干细胞生物学;遗传学;分子生物学和生物化学;免疫学伊拉斯mus+计划交换:里斯本,葡萄牙(里斯本大学科学学院)30个ECTS(2022年1月至2022年1月):实习细胞周期监管实验室(Monica Bettencourt-Dias)(CF专业经验)早期发育,生长调节,模式,细胞机制在Roscoff开发transreg课程(2022年12月):使用海胆模型(微注射,配子收集,细胞周期抑制剂...)
魔术 - 晶体:在异质样品中稀缺大分子的结构性确定Yasuhiro arimura 1,2*,hide A. Konishi 1,Hironori funabiki 1* 1* 1 1* 1 1* 1个伪装体和细胞生物学实验室,纽约州纽约州立大学,纽约州纽约州立大学。中心,美国华盛顿州西雅图市,98109-1024 *通信:funabih@rockefeller.edu,yarimura@rockefeller.edu或yarimura@fredhutch.org摘要冷冻冷冻级单 - 单点分析通常需要在0.05〜5.5.5.0 mg/ml上达到目标Macromolecule浓度,以下是iSMACromolecule浓度。在这里,我们设计了磁隔离和浓度(魔术)-cryo-em,这是一种能够对磁珠上捕获的靶标的直接结构分析,从而将目标的浓度需求降低到<0.0005 mg/ml。将魔术 - 晶体EM适应染色质免疫沉淀方案,我们表征了连接器组蛋白H1.8相关的核小体的结构变化,这些核小体是从异叶鸡蛋提取物中的相间和中期染色体分离出来的。将重复的选择组合以排除垃圾颗粒(Duster),这是一种去除低信噪比粒子颗粒的粒子策划方法,我们还解决了H1.8结合的核纤维蛋白NPM2的3D冷冻EM结构与与跨相染色体和露出不同的敞开和封闭的结构变体的3D冷冻EM结构。我们的研究表明,魔术 - 晶体EM对异质样品中稀缺的大分子的结构分析的实用性,并为H1.8与核小体关联的细胞周期调节提供了结构见解。关键字冷冻EM,磁珠,Xenopus鸡蛋提取物,核小体,接头组蛋白H1,核纤维蛋白
摘要动物内脏器官的左右 (LR) 不对称是在胚胎发育过程中通过逐步过程建立起来的。虽然有些步骤是保留的,但动物之间采用不同的策略来启动身体对称性的破坏。在斑马鱼 (硬骨鱼类)、非洲爪蟾 (两栖动物) 和小鼠 (哺乳动物) 中,对称性破坏是由 LR 组织器处的定向流体流动引起的,这种流体流动由运动纤毛产生并被机械反应细胞感知。相比之下,鸟类和爬行动物不依赖纤毛驱动的流体流动。无脊椎动物(如蜗牛和果蝇)采用另一种不同的机制,其中对称性破坏过程由肌球蛋白和肌动蛋白分子相互作用下游获得的细胞手性支撑。在这里,我们强调了肌动球蛋白相互作用和平面细胞极性是动物之间多种 LR 对称性破坏机制的汇聚切入点。
时空生物电态调节胚胎发生的多个方面。一个关键的开放问题涉及特定的多细胞电势模式如何差异激活器官发生所需的不同下游基因。要理解空间生物启示模式,遗传学和形态之间关系的信息处理机制,我们专注于Xenopus ectoderm中的特定时空生物启用模式,以调节胚胎脑构图。我们使用机器学习设计了胚胎脑形态发生的最小但可扩展的生物电遗传学动力学网络模型,该模型定性地概括了先前的实验观察结果。该模型的因果整合分析揭示了与空间生物电和基因活性模式相关的简单高阶时空信息整合机制,其中后者表示是细胞组伏特的因果影响的函数。该机制的具体方面包括因果分配(某些细胞位置对于集体决策更重要),信息不对称性(降压细胞比超极化细胞更具影响力),长距离影响(细胞中的基因对远方细胞的伏特效应非常敏感),并且劳动力敏感(不同的基因对不同的基因均具有敏感的基因)。该机制的不对称信息处理特征使该模型预测了调节正常胚胎脑发育的生物电预制预图中意外的可塑性和鲁棒性程度。我们的体内实验通过Xenopus胚胎中的分子操作验证了这些预测。这项工作表明了使用最小的硅方法中的力量大幅度降低体内参数空间,从而使硬生物学问题可进行。这些结果提供了对指导大规模形态发生的生物电力刺激的整体决策过程的见解,这表明了生物医学干预措施的新应用以及用于合成生物工程的新工具。