一旦将实验室视为物理系统,将参考系从根本上视为量子系统在量子引力中是不可避免的,在量子基础中也是如此。因此,这两个领域都面临着如何描述相对于量子参考系的物理学以及相对于不同此类选择的描述如何关联的问题。在这里,我们利用两个领域思想的富有成效的相互作用,开始开发一种统一的量子参考系变换方法,最终旨在涵盖量子物理学和引力物理学。特别是,使用受引力启发的对称原理,它迫使物理可观测量具有关联性并导致描述中固有的冗余,我们开发了一个视角中性结构,它同时包含所有框架视角并通过它进行更改。我们表明,采用特定框架的视角相当于修复经典和量子理论中与对称性相关的冗余,而改变视角则对应于对称变换。我们使用约束系统的语言来实现这一点,这种语言自然地编码了对称性。在一个简单的一维模型中,我们恢复了 [ 1 ] 的一些量子框架变换,将它们嵌入到中立的框架中。利用它们,我们说明了所观察系统的纠缠和经典性如何依赖于量子框架视角。我们的操作
摘要。固氮微生物(固氮菌)通过将氮气还原为生物可利用氮,显著影响海洋生产力。最近,非蓝藻固氮菌(NCD)已被确定为海洋固氮的重要贡献者。其中,Gamma A 是研究最深入的海洋 NCD 之一,因为它无处不在;然而,控制其分布的因素仍然未知。特别是,微型浮游动物摄食作为自上而下控制的重要性尚未得到检验。在本研究中,我们使用 nifH 扩增子测序研究了固氮菌群落结构,并使用稀释实验和定量聚合酶链反应(PCR)相结合的方法量化了 Gamma A 的生长和微型浮游动物摄食死亡率,地点位于日本南部海岸黑潮北缘光照充足的水域。在研究区域,Gamma A 普遍存在并在固氮菌群落中占主导地位,而蓝藻固氮菌的相对丰度较低。Gamma A 的微型浮游动物摄食率明显高于整个浮游植物群落,并且通常与其生长率保持平衡,这表明 Gamma A 可以有效地将固定氮转移到更高的营养级。尽管 Gamma A 的生长率对营养物添加没有表现出明显的反应,但 Gamma A 的丰度与营养物浓度和微量元素含量有显著的关系。
几十年来,研究人员一直致力于开发适应性更强、对环境胁迫耐受性更强的改良主要作物。饲用豆科植物因其巨大的生态和经济价值而在世界范围内广泛传播。非生物胁迫和生物胁迫是限制豆科植物生产的主要因素,而苜蓿(Medicago sativa L.)对干旱和盐胁迫表现出较高的耐受性。对苜蓿改良的努力已导致推出了具有高产量、更好的胁迫耐受性或饲用品质等新的农艺重要性状的品种。苜蓿与固氮细菌有高效的共生关系,因此具有非常高的营养价值,而深根系统有助于防止干旱土地的土壤水分流失。与它的近亲苜蓿(Medicago truncatula Gaertn.)不同,苜蓿的全基因组尚未发布,因此现代生物技术工具在苜蓿中的使用具有挑战性。识别、分离和改良与非生物或生物胁迫反应有关的基因,对我们了解农作物如何应对这些环境挑战做出了重大贡献。在这篇综述中,我们概述了高通量测序、非生物或生物胁迫耐受基因的表征、基因编辑以及具有苜蓿改良生物技术潜力的蛋白质组学和代谢组学技术方面取得的进展。
许多量子算法具有指数运行时间优势,而其经典算法则是大量的量子和量子门。在科学或工业上有趣的量表上进行了包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。 解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。 在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。 尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。 作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。 因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。 优化任意量子算法分解为最少数量的T门的分解是包括估计具有数百个旋转轨道和电子的分子的能量水平[13,26],并考虑了具有数千个位的RSA整数[8]。解决这些问题至少需要许多量子位来编码输入,在这些输入上,将数十亿至数万亿个基本量子门应用于这些输入上。在大规模上,嘈杂的物理硬件上的量子计算需要量子校正代码中的逻辑量子位上容易且易于故障。尽管可以在许多校正代码上在横向上实现,因此可以在横向上实现,因此可以通过非电压门(通常是t门)增强它们,以实现它们,以实现它们,以实现t门,以实现通用量子计算。作为t门的同时持续实现[28],通过诸如魔术状态蒸馏[2]或规格固定[20]的诸如魔术状态蒸馏之类的技术含量[28]实现了耐断层的t门,这些技术的成本更高。因此,T门的总数是理解易于断层量子算法的现实成本的好启发式。优化任意量子算法分解为最少数量的T门的分解是
11 阿尔凯西和麦克法兰,2023;阿塔鲁里等人。 2023;基督教 2023;法郎 2023;胡赛尼、拉斯穆森和雷斯尼克 2023;吉等人。 2023;基德和比尔汉 2023; Lee、Bubeck 和 Petro 2023;莱特曼等人。 2023;刘、张、梁 2023;梅加赫德等人。 2023;梅策、莫兰丁-雷斯、罗兰-梅策和弗洛林多 2023 年; OpenAI 2023 年 3 月 27 日;波里茨 2023;韦斯和梅斯 2023 年;威瑟 2023;张,等人。 2023;赵,等人。 2023; Zhavoronkov 2023。12 Busch 2023;电子隐私信息中心 2023;Huang 2023;Hosseini 和 Horbach 2023;Lauer、Constant 和 Wernimont 2023;Meskó 和 Topol 2023;美国国立卫生研究院 2023;Schwartz 和 Rogers 2022。13 请参阅 registrar.uky.edu/ferpa 和 registrar.uky.edu/ferpa/ferpa-faculty-and-staff-faq。14 请参阅 www.research.uky.edu/office-research-integrity。15 Bender、Gebru、McMillan-Major 和 Shmitchell 2021;Brown 等人 2020;Caliskan、Bryson 和 Narayanan 2017;Hovy 和 Prabhumoye 2021; Liang, Wu, Morency 和 Salakhutdinov 2021;Najibi 2020;Nazer 等人 2023;Nicholas 和 Bhatia 2023;Schwartz 等人 2022;Small 2023 年 7 月 4 日;Whittaker 等人 2019;Zhuo, Huang, Chen 和 Xing 2023。16 Appel、Neelbauer 和 Schweidel 2023;Lucchi 2023;Saveri 和 Butterick 2023;Sobel 2018;Strowel 2023;Thorbecke 2023;Zirpoli 2023。17 Chen, Zaharia 和 Zou 2023。
本政策文件就格鲁吉亚应如何组织国家复原力建设进程以及这个黑海国家可以从北约及其成员国学到什么提出了一些想法。根据广泛的案头研究和与格鲁吉亚安全专家进行的焦点小组讨论,我们认为格鲁吉亚需要一项基于全社会方法的全面跨部门复原力战略。通过回顾北约和欧盟国家的最佳实践以及格鲁吉亚专家的意见,我们确定了复原力建设的重要组成部分四个维度:体制/法律、社会、政治和公私。复原力建设的体制和法律维度意味着精简战略文件和立法,以及改善公共治理和机构间协调。政治维度指的是修复格鲁吉亚政治体系中的弱点,如低政治信任、两极分化、激进化和不良治理实践。社会层面意味着将韧性建设的所有权扩大到包括所有社会群体,以确保全体民众都参与到韧性建设过程中。这还涉及提高公民的社会信任和心理韧性。最后,公私伙伴关系是指将韧性建设的所有权扩大到私营部门,私营部门通常拥有重要基础设施的很大一部分,是确保不间断运行的关键。
QUINGO 开发团队: 傅学锋,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 俞金涛,数学工程与先进计算国家重点实验室,中国 苏星,国防科技大学计算机学院,中国 蒋涵如,鹏程实验室量子计算中心,中国 吴华,华东师范大学上海市可信计算重点实验室,中国 程福成、邓曦、张金荣,鹏程实验室量子计算中心,中国 金磊、杨一航、徐乐、胡春超,郑州大学信息工程学院,中国 黄安琪、黄光耀、强小刚、邓明堂、徐萍、徐伟霞,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国国防科技大学计算机学院,中国 刘万伟,国防科技大学计算机学院,中国 张宇,中国科学技术大学计算机科学与技术学院,中国 邓宇欣,华东师范大学上海市可信计算重点实验室,中国 吴俊杰,国防科技大学计算机学院量子信息研究所、高性能计算国家重点实验室,中国 冯远,悉尼科技大学量子软件与信息中心,澳大利亚
氮是植物生长和生产力的关键营养素,但在农业中使用的不确定是经济和环境挑战。增强氮的使用效率(NUE)对于促进可持续的作物生产和减轻氮损失的负面影响,例如水污染和温室气体排放至关重要。本评论讨论了旨在改善NUE的各种策略,重点是农艺实践,遗传进步和综合管理方法。与精确的农业技术一起探索了传统的农艺方法,包括氮施加分裂和使用受控释放肥料,这可以根据作物和土壤条件实时调整对氮的实时调整。遗传学和生物技术的进步,例如常规育种,遗传修饰和基因组编辑,已促进了氮的摄入和吸收和同化的改善的作物品种的发展。此外,包括氮固定细菌和菌根真菌在内的有益微生物的作用被强调为增强氮的可用性和减少对合成肥料的依赖的自然手段。审查进一步强调了可持续的实践,例如基于豆类的农作物轮作,连续覆盖作物和有机施肥,这有助于土壤氮的富集和整体土壤健康。通过结合这些农艺,遗传和微生物策略,可以实现一种整体氮管理方法,从而最大程度地提高作物产量,同时最大程度地减少环境影响。这种综合策略支持弹性和可持续的农业系统的发展,从而促进了长期的土壤生育能力和生产力。
内核回归或分类(也称为机器学习中的加权ϵ -NN方法)对它们的简单性有吸引力,因此在数据分析中无处不在。ever,内核回归或分类的实际实现包括量化或子采样数据以提高时间效率,通常是以预测质量为代价。尽管在实践中有必要进行这种交易,但它们的统计含义通常尚未得到充分的了解,因此实际实施的实施很少。特别是尚不清楚是否可以维持内核预测的统计准确性(在某些应用中至关重要),同时改善预测时间。目前的工作提供了将内核预测与数据量化相结合的指导原则,以确保预测时间和准确性之间的良好贸易,尤其是为了近似维持香草内核预测的良好准确性。此外,我们的贸易保证是根据调整参数明确处理的,该调整参数可以作为旋钮,该旋钮根据实际需求而定于时间或准确性。在旋钮的一端,预测时间与单个最近邻居预测的顺序相同(在统计上是不一致的),同时保持一致性;在旋钮的另一端,预测风险几乎是最小的(就原始数据大小而言),同时仍降低时间复杂性。理论结果在来自一系列现实世界应用域的数据上得到了验证;特别是我们证明了理论旋钮的性能如预期的。因此,分析揭示了数据定量化方法与内核预测方法之间的相互作用,最重要的是,显式地控制了对从业者的贸易,而不是提前或使其不透明。
摘要:在这项研究中,处理输入参数对糖棕榈纤维增强的三种材料厚度的KERF锥度角响应的影响研究被研究为磨料水夹和激光束束切割技术的输出参数。该研究的主要目的是获取数据,其中包括使用这两种非常规技术来切割复合材料的最佳输入参数,以避免使用传统的切割方法切割复合材料时出现的某些缺陷,然后进行比较,然后进行比较以确定哪种是关于KERF Taper角度响应的最合适的技术,该技术是所需的所缺乏的。选择了可变输入参数,以优化KERF锥度角度。虽然水压,穿越速度和隔离距离是水夹切割过程的输入变量参数,但在两种切割技术中,所有其他输入参数都固定。使用Taguchi的方法确定了提供KERF锥度最佳响应的输入参数的水平,并通过计算每个参数的信号to-noise比率(S/N)的最大值差异来确定输入参数的重要性。使用变异分析(ANOVA)确定了每个输入处理参数对KERF锥度角度影响的贡献。与先前研究中推断的结果相比,在KERF锥度角的响应方面,这两个过程均获得了可接受的结果,并指出从激光切割过程中产生的平均值远低于由于水夹切割过程而产生的,这给激光切割技术提供了优势。