Referents • Coe BP, Witherspone K, Rosenfeld JA, of BW, Vulto-from Silfwood AT, BoscoP, Friend C, Bono S, True-Hower-Hoics A, Pfundt R, Crumm N, Carvill N, Carvill GL, Li D, Amall GL, Lead Brown N, Lockhart PJ, Scheffer IE, Alberti A, Shaw M, Pettinato R, Tervo R,Lurd N,Reafter MR,Torchia BS,O' Roak BJ,Fcheera M,Hehir-Kwa,Mercea J,The Free BB,Free BB,Freeer BB,Freeer BB,Freeer BB,Romano C,Romano C,Eicher EE。进行罚款分析或复制NUMBR变化标识指定基因相关的白色发育延迟器。natgenet。2014年10月; 46(10):1063-71。 doi:10,1038/ng.3092。EPUB 2014年9月14日。PubMed引用(htps://pubmed.ncbi.ncbi.nlm.gv/25217958)或PubMed Central上的免费文章(//wwww..nl.nl.nl.nl.nl.ncb.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.nl.gv.gv/pmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmc417294/) Nishizawa T,Dea AN,Miny P,YamamotoT。通过SetBP1Haploss Sendim Causs综合征降低表达。J Med。2011 feb; 48(2):117-22。 doi:10,1136/jmg.2010,084582。Epub 2010年10月30日。引用PubMed(htps://pubmed.ncbi.ncbi.nlm.nlm.gv/21037274)•Brivasen RO,Srivastava S,C,C,C,Rossca G,Rossa G,Rossa M,Rossa M,Rossa M,Rossa M,Rossa M,Borner RA。 MMK,当S,Fisherse,Bon Bw的摩根。临床描述或SETBP1单盘式典型。EUR J HUM GENET。 2021年8月; 29(8):1198-1205。 doi:10。EUR J HUM GENET。2021年8月; 29(8):1198-1205。 doi:10。
这也使得直接在原子水平上研究酶反应的整个过程成为可能,为酶学的新领域打开了大门。这将是根据反应中间体的结构(即酶的真实活性状态)合理设计催化剂和药物的第一步。 出版信息 标题:在原子分辨率下可视化光裂解酶的 DNA 修复过程 作者:Manuel Maestre-Reyna*、Po-Hsun Wang、Eriko Nango、Yuhei Hosokawa、Martin Saft、Antonia Furrer、Cheng-Han Yang、Eka Putra Gusti Ngurah Putu、Wen-Jin Wu、Hans-Joachim Emmerich、Nicolas Caramello、Sophie Franz-Badur、Chao Yang、Sylvain Engilberge、Maximilian Wranik、Hannah Louise Glover、Tobias Weinert、Hsiang-Yi Wu、Cheng-Chung Lee、Wei-Cheng Huang、Kai-Fa Huang、Yao-Kai Chang、Jianh-Haur Liao、Jui-Hung Weng、Wael Gad、Chiung-Wen Chang、Allan H. Pang、Kai-Chun Yang、Wei-Ting Lin、 Yu-Chen Chang、Dardan Gashi、Emma Beale、Dmitry Ozerov、Karol Nass、Gregor Knopp、Philip JM Johnson、Claudio Cirelli、Chris Milne、Camila Bacellar、Michihiro Sugahara、Shigeki Owada、Yasumasa Joti、Ayumi Yamashita、Rie Tanaka、Tomoyuki Tanaka、Fangjia Luo、Kensuke Tono、Wiktoria Zarzycka、Pavel Müller、Maisa Alkheder Alahmad、Filipp Bezold、Valerie Fuchs、Petra Gnau、Stephan Kiontke、Lukas Korf、Viktoria Reithofer、Christian Joshua Rosner、Elisa Marie Seiler、Mohamed Watad、Laura Werel、Roberta Spadaccini、Junpei Yamamoto、So Iwata、Dongping Zhong、Joerg Standfuss、Antoine Royant、Yoshitaka Bessho*, Lars-Oliver Essen*, Ming-Daw Tsai* <杂志> Science < DOI > 10.1126/science.add7795 补充信息 [1] X射线自由电子激光器(XFEL)
通过胸部 X 光片进行预测:一项多中心研究 主要研究员:佐藤洋一 名古屋大学医学院 共同研究员:山本则夫 宫本整形外科医院 稻垣直哉 慈惠大学柏医院 家崎雄介 国立医院组织 名古屋医疗中心 高原俊介 兵库县立加古川医疗中心 尽管全世界患有骨质疏松症的患者数量正在增加,但目前的诊断和治疗还不够充分。在这项研究中,我们开发了一个深度学习模型来通过胸部 X 光片预测骨矿物质密度 (BMD) 和 T 值,胸部 X 光片是最常见、最容易获得且成本最低的医学影像检查方法之一。本研究中使用的数据集包含 17,899 张图像,这些图像对应于 2010 年至 2021 年期间在六家医院接受双能 X 射线吸收仪 (DXA) 和胸部 X 光检查的 10,102 名患者。对于学习标签,我们使用 (1) 髋部和腰椎的 BMD (g/cm2) 和 (2) 基于髋部或腰椎 T 分数的诊断(正常、骨质减少和骨质疏松症)。然后,我们通过胸部 X 光片、年龄和性别的集成学习来训练深度学习模型,以使用回归和 T 分数进行多类分类来预测 BMD。我们评估了以下两个指标来评估深度学习模型的性能:(1) 预测和真实 BMD 之间的相关性和 (2) 预测类别和真实类别之间 T 分数的一致性。BMD 预测的相关系数为髋部 = 0.75,腰椎 = 0.63。正常、骨质减少和骨质疏松诊断的 T 分数预测曲线下面积分别为 0.89、0.70 和 0.84。这些结果表明,所提出的深度学习模型可能适用于通过预测胸部 X 光片的 BMD 和 T 分数来筛查骨质疏松症患者。
计划委员会:英特尔公司(美国)的Frank E. Abboud; UWE F.W.Behringer,UBC微电子学(德国); Ingo Bork,西门子Eda(美国); Brian Cha,Entegris,Inc。(韩国,共和国); Sandeep Chalamalasetty,Micron Technology,Inc。(美国);三星电子公司Jin Choi(韩国,共和国); Aki Fujimura,D2S,Inc。(美国); Emily E. Gallagher,IMEC(比利时); lasertec USA Inc. Arosha W. Goonesekera(美国); Naoya Hayashi,Dai Nippon Printing Co.,Ltd。(日本); Henry H. Kamberian,Photronics,Inc。(美国); Bryan S. Kasprowicz,美国Hoya Corp.(美国); Eung Gook Kim,E-Sol,Inc。(韩国,共和国); Romain Lallement,IBM Thomas J. Watson Research Ctr。(美国);英特尔公司(美国)Ted Liang; Nihar Mohanty,Meta(美国);肯特·H·纳川(Kent H. Dong-Seok Nam,ASML(美国);高海·奥努(Takahiro Onoue),霍亚公司(Japan)(日本); Danping Peng,TSMC北美(美国); Jed H. Rankin,IBM Corp.(美国);道格拉斯·J·雷斯尼克(Douglas J. Resnick),佳能纳米技术公司(美国); Carl Zeiss Sms Ltd.(以色列)的Thomas Franz Karl Scheruebl; Ray Shi,KLA Corp.(美国); Jaesik Son,SK Hynix System Ic Inc.(韩国,共和国);西门子Eda(美国)的Yuyang Sun; lasertec U.S.A.,Inc。Zweigniederlassung Deutschland(德国)Anna Tchikoulaeva(德国);克莱尔·范·拉尔(Claire Van Lare),荷兰ASML B.V.(荷兰); Yongan Xu,Applied Materials,Inc。(美国); Yamamoto Kei,Fujifilm Corp.(日本); Seung-Hune Yang,三星电子有限公司(韩国,共和国); Nuflare Technology,Inc。(日本)舒斯助Yoshitake; Bo Zhao,Meta(美国); Larry S. Zurbrick,Keysight Technologies,Inc。(美国)
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
[4] Linda Evans、Fred Hardtke、Emily Corbin 和 Wouter Claes。2020 年。伪装的变色龙:在埃及 el-Hosh 遗址的新发现。《考古学和人类学》12,8 (2020),1–9。[5] 欧洲宠物食品工业联合会 (FEDIAF)。2020 年。事实与数据 2020。https://www.fediaf.org/images/FEDIAF_Facts_and_Figures_2020.pdf [6] Martin S Fischer、Cornelia Krause 和 Karin E Lilje。2010 年。变色龙运动能力的进化,或如何成为树栖爬行动物。《动物学》113,2 (2010),67–74。[7] Olivier Friard 和 Marco Gamba。 2016. BORIS:一款免费、多功能的开源事件记录软件,可用于视频/音频编码和实时观察。《生态学与进化方法》7,11(2016),1325–1330。[8] Klaus Greff、Rupesh K Srivastava、Jan Koutník、Bas R Steunebrink 和 Jürgen Schmidhuber。2016. LSTM:搜索空间漫游。《IEEE 神经网络与学习系统汇刊》28,10(2016),2222–2232。[9] Anthony Herrel、Krystal A Tolley、G John Measey、Jessica M da Silva、Daniel F Potgieter、Elodie Boller、Renaud Boistel 和 Bieke Vanhooydonck。2013. 缓慢但坚韧:变色龙奔跑和抓握能力分析。 《实验生物学杂志》216,6(2013),1025–1030。[10] Timothy E Higham 和 Bruce C Jayne。2004。蜥蜴在斜坡和栖木上的运动:树栖专化者和陆栖通才者的后肢运动学。《实验生物学杂志》207,2(2004),233–248。[11] Mayank Kabra、Alice A Robie、Marta Rivera-Alba、Steven Branson 和 Kristin Branson。2013。JAABA:用于自动注释动物行为的交互式机器学习。《自然方法》10,1(2013),64–67。 [12] Mary P Klinck、Margaret E Gruen、Jérôme RE del Castillo、Martin Guillot、Andrea E Thomson、Mark Heit、B Duncan X Lascelles 和 Eric Troncy。2018 年。通过随机临床试验,开发了供看护人/主人 MI-CAT (C) 使用的蒙特利尔猫关节炎测试工具,并对其初步效度和信度进行了评估。《应用动物行为科学》200 期 (2018),第 96-105 页。[13] JB Losos、BM Walton 和 AF Bennett。1993 年。《肯尼亚变色龙的冲刺能力与粘着能力之间的权衡》。《功能生态学》(1993),第 281-286 页。[14] Tom Menaker、Anna Zamansky、Dirk van der Linden、Dmitry Kaplun、Aleksandr Sinitica、Sabrina Karl 和 Ludwig Huber。 2020 年。面向数据驱动的动物行为模式自动分析方法。第七届动物-计算机交互国际会议论文集。1-6。[15] Nikola Mijailovic、Marijana Gavrilovic、Stefan Rafajlovic、M Ðuric-Jovicic 和 D Popovic。2009 年。从加速度和地面反作用力识别步态阶段:神经网络的应用。Telfor 杂志 1, 1(2009 年),34-36。[16] Hung Nguyen、Sarah J Maclagan、Tu Dinh Nguyen、Thin Nguyen、Paul Flemons、Kylie Andrews、Euan G Ritchie 和 Dinh Phung。2017 年。使用深度卷积神经网络进行动物识别和鉴别,用于自动野生动物监测。2017 年 IEEE 数据科学与高级分析国际会议 (DSAA)。IEEE,40–49。[17] Matthias Ott。2001 年。变色龙有独立的眼球运动,但在扫视猎物追踪过程中双眼会同步。实验脑研究 139,2(2001 年),173–179。[18] Veronica Panadeiro、Alvaro Rodriguez、Jason Henry、Donald Wlodkowic 和 Magnus Andersson。2021 年。28 款免费动物追踪软件应用程序回顾:当前功能和局限性。实验室动物(2021 年),1–9。[19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020. 揭示未知:使用深度学习实时识别加拉帕戈斯蛇类。动物 10, 5 (2020), 806。[20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan Shuman 和 Denise J Cai。2019. ezTrack:用于研究动物行为的开源视频分析流程。科学报告 9, 1 (2019), 1–11。[21] Talmo D Pereira、Diego E Aldarondo、Lindsay Willmore、Mikhail Kislin、Samuel SH Wang、Mala Murthy 和 Joshua W Shaevitz。2019. 使用深度神经网络快速估计动物姿势。自然方法 16, 1 (2019), 117–125。[22] Jane A Peterson。 1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1-42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用智能与信息学会议上。Springer,216-231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016. 您只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779-788。 [25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。一种新型活动监测器在评估猫的身体活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。实验动物(2021),1-9。 [19] Anika Patel、Lisa Cheung、Nandini Khatod、Irina Matijosaitiene、Alejandro Arteaga 和 Joseph W Gilkey。 2020。揭示未知:利用深度学习实时识别加拉帕戈斯蛇种。动物 10, 5 (2020), 806。 [20] Zachary T Pennington、Zhe Dong、Yu Feng、Lauren M Vetere、Lucia Page-Harley、Tristan S human 和 Denise J Cai。 2019. ezTrack:用于研究动物行为的开源视频分析管道。科学报告 9、1 (2019)、1-11。 [21] 塔尔莫·D·佩雷拉、迭戈·E·阿尔达隆多、林赛·威尔莫尔、米哈伊尔·吉斯林、塞缪尔·SH·王、马拉·穆尔蒂和约书亚·W·沙维茨。 2019. 使用深度神经网络快速估计动物姿势。《自然方法》16,1(2019),117–125。[22] Jane A Peterson。1984. 蜥蜴(爬行动物:蜥蜴)的运动方式,特别是前肢。《动物学杂志》202,1(1984),1–42。[23] Nagifa Ilma Progga、Noortaz Rezoana、Mohammad Shahadat Hossain、Raihan Ul Islam 和 Karl Andersson。2021. 基于 CNN 的毒蛇和无毒蛇分类模型。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。 2016. 只需看一次:统一的实时物体检测。在 IEEE 计算机视觉与模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957. 世界上的现存爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019. 行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。[27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020. 新型活动监测器在评估猫身体活动和睡眠质量中的实用性。 Plos one 15, 7 (2020), e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。在国际应用情报与信息学会议上。Springer,216–231。[24] Joseph Redmon、Santosh Divvala、Ross Girshick 和 Ali Farhadi。2016 年。你只需看一次:统一的实时物体检测。在 IEEE 计算机视觉和模式识别会议论文集上。779–788。[25] Karl Patterson Schmidt、Robert F Inger 和 Roy Pinney。1957 年。世界上现存的爬行动物。纽约花园城汉诺威大厦。[26] Martin Stevens 和 Graeme D Ruxton。2019 年。行为在动物伪装中的关键作用。生物学评论 94, 1 (2019),116–134。 [27] Atsushi Yamazaki、Kazuya Edamura、Koji Tanegashima、Yuma Tomo、Makoto Yamamoto、Hidehiro Hirao、Mamiko Seki 和 Kazushi Asano。2020 年。新型活动监测器在评估猫体力活动和睡眠质量方面的实用性。Plos one 15, 7 (2020),e0236795。
7:30 - 8:00 早餐 8:00 - 8:10 开幕词:Michael G. Fehlings 博士、Carol Swallow GALLIE-BATEMAN 博士、MCMURRICH 和转化研究演讲 |会议主席:Mojgan Hodaie 博士 8:10 – 8:25 Julian Daza (SSTP)、Peter Smith、Shabbir Alibhai、Erin Kennedy、Duminda Wijeysundera、FIT 术后研究人员:“术前虚弱对大型手术后老年患者严重术后残疾的影响:一项多中心前瞻性队列研究” 8:25 – 8:40 Jack W. Hickmott、Gajeni Prabaharan、Tom Enbar、Ricky Siu、Varanan Vejeyathaas、Kriesha Eyer、Cindi M. Morshead:“将星形胶质细胞转化为神经元:开发基因治疗方法修复中风损伤的大脑” 8:40 – 8:55 Chloe R. Wong (SSTP)、Alice Zhu、Helene Retrouvey、Heather L. Baltzer、Christopher Witiw:“成本效用分析大拇指腕掌关节骨关节炎的“大拇指切除术和韧带重建肌腱插入与缝合悬吊关节成形术” 8:55 – 9:10 Kumi Mesaki、Haruchika Yamamoto、Stephen Juvet、Jonathan Yeung、Zehong Guan、Akhi Akhter、Cameron Dickie、Henna Mangat、Aizhou Wang、Gavin W. Wilson、Andrea Mariscal、Jim Hu、Alan R. Davidson、Benjamin P. Kleinstiver、Marcelo Cypel、Mingyao Liu、Shaf Keshavjee:“利用 CRISPR-Cas 技术对供体肺进行基因组编辑以进行免疫学修改用于移植” 9:10 – 9:25 Alex Landry (SSTP)、Jeff Zuccato、Vikas Patil、Mat Voisin、Justin Wang、Yosef Ellenbogen、Chloe Gui、 Andrew Ajisebutu、Farshad Nassiri、Gelareh Zadeh:“脑脊液甲基化组和蛋白质组的整合可避免中枢神经系统淋巴瘤手术活检的需要” 9:25 – 9:40 Kevin R. An、Dominique Vervoort、Feng Qiu、Derrick Y. Tam、Rodolfo V. Rocha、Lamia Harik、Sameer Hirji、Mario FL Gaudino、Harindra C. Wijeysundera、Stephen E. Fremes:“重度冠状动脉疾病女性患者经皮冠状动脉介入治疗与冠状动脉搭桥术的长期疗效对比” 9:40 - 10:40 电子海报展示
p-c-05促进技术和合作开发用于手术训练DHARMA CHARI-LETTS的动态特异性ED胸腔切开术模型;肯特·K·山本(K. K. Yamamoto),学士; Olufemi Oladokun,医学博士;丹妮·陈(BS); Layla Triplett;路易丝·杰克逊(Louise Jackson),医学博士,FACS;帕特里克·詹姆斯·科德(Patrick James Codd),医学博士,法恩斯;以及北卡罗来纳州教堂山的FACS East Chapel Hill High School,MD的Sabino Zani;北卡罗来纳州达勒姆市杜克大学;杜克大学医学院,北卡罗来纳州达勒姆市,背景:有效模拟的作用仍然非常重要,尤其是在准备复杂场景方面。这样的救生程序是左 - 前外侧胸腔切开术或急诊室(ED)胸部切开术,被用作创伤患者复苏的最后手段。较低的生存率提高了专业知识和效率的重要性,但是对学员的教育机会很少使每个患者的演示都是复苏和培训的独特机会。当前模型的范围在成本效益和保真度的水平上有所不同,但是大多数设计仅用于突出涉及的步骤,而牺牲了特定的操作。我们提出了一个动态的ED胸腔切开术模型,该模型具有合规性的肋骨,以允许受训者练习诸如扩散肋骨之类的动作。技术概述:从开源3D模型存储库中获取了肋骨的3D模型,并在Meshmixer和Autodesk Fusion360中进行了修改。钉子被实施,以将延伸弹簧附加到模拟软骨依从性。然后在24小时内将新的肋骨模型印刷。所提出的弹簧接头方法允许在三个维度和模拟肋骨合规力的肋骨移动。在手术模拟和教育中的潜在应用:用户可以像真正的ED胸腔切开术中那样散布肋骨。该模型具有高保真度,动态性,需要短时间的周转时间,并且可扩展且可自定义。潜在的合作机会:拟议的模型是与外科医生,居民,模拟专家和工程师合作的结果。未来的工作包括与外科医生,工程师,模拟专家和心脏病专家的持续合作,以引入一个心脏模型,以进行完整的ED胸腔切开术模拟。
不列颠哥伦比亚省充满了充满活力的社区和自然美景,这使其成为生活和工作的令人难以置信的地方。但是,我们所在的位置和景观的崎rug崎about可能会给我们的紧急情况带来潜在的挑战。我们政府的首要任务是向紧急人员和应急管理代表提供确保对紧急情况和灾难进行协调和有组织的方法所需的工具。为了确保这一优先级,我们提出了创新的立法,制定了全面的紧急响应练习,并采用了不列颠哥伦比亚省紧急管理系统(BCEMS),这是一个全面的框架,为整个省份开发,协调和实施紧急管理计划的标准化方法提供了一种结构。通过在2000年采用BC紧急响应管理系统(BCERMS),不列颠哥伦比亚人的安全得到了极大的提高,但2011年利益相关者的反馈和紧急管理BC审查确定,明确需要更新来反映全球全球领域的运营经验,最佳实践,组织变化和转变。我们面临着一种选择 - 继续沿着我们习惯或带领我们的省朝着新的方向发展的道路 - 这个方向应对当前挑战并为未来做好准备。BCERMS已演变为四相紧急管理系统 - 缓解,准备,响应和恢复 - 而不是专注于紧急响应。现在是我们领导和卑诗省的时候有能力。紧急准备国家部长Naomi Yamamoto这种演变导致了本BCEMS指南的准备,该指南描述了卑诗省紧急管理的更广泛图片,并为负责应急管理和公共安全的人提供了一种更加集成的方法。作为紧急准备大臣,我可以向不列颠哥伦比亚人和我们的紧急管理合作伙伴保证,我们的政府不仅支持本指南,而且我们还致力于行使和精炼,以识别和缩小所有明显的差距。认识到任何改革的成功实施都需要政府,非政府组织,志愿者以及私营和公共部门机构的所有级别的支持,我要感谢许多人在这项重要计划的发展中贡献他们的观点,评论和反馈。这是保护所有不列颠哥伦比亚人安全的正确方向迈出的又一步。
三脑假说是保罗·麦克莱恩在 20 世纪 60 年代提出的一种进化神经学模型,描述了脊椎动物前脑和行为的进化。该模型由三个主要部分组成:爬行动物复合体、古哺乳动物复合体和新哺乳动物复合体。爬行动物复合体也称为“R 复合体”,负责原始本能,如攻击性、支配性、领土意识和仪式展示。该复合体包括在发育过程中从前脑底部衍生的结构,例如隔膜、杏仁核、下丘脑、海马复合体和扣带皮层。相比之下,古哺乳动物复合体与情绪、动机和父母行为有关。该复合体包括边缘系统,这是麦克莱恩在 1952 年的一篇论文中首次提出的。边缘系统由相互连接的大脑结构组成,这些结构在哺乳动物进化早期出现,负责进食、生殖行为和父母行为。另一方面,新哺乳动物复合体与客观或理性思维有关,是高等哺乳动物,尤其是人类所独有的。该复合体包括大脑新皮层,麦克莱恩认为这是大脑进化的最新一步。尽管三位一体大脑假说在 20 世纪 70 年代和 80 年代很受欢迎,但自那时起,它就一直受到进化和发育神经科学的批评。许多科学家认为它是一个神话,因为它无法解释复杂的认知过程,也无法解释人类行为的个体差异。如今,三位一体大脑模型已不再被比较神经学家广泛接受。负责人类语言、思维和自我控制的大脑结构由三个不同的部分组成。这些组成部分相对独立,但以复杂的方式相互作用。第一部分被称为爬行动物大脑,控制基本本能和行为,如进食和打斗。相比之下,新哺乳动物复合体控制着更高级的行为,如理性思考和决策。最近的研究表明,工具制作和类似语言的分类等高级认知能力并非哺乳动物所独有,而是存在于各种脊椎动物中。父母照顾后代的“古哺乳动物”特征在鸟类和一些鱼类中广泛存在,表明这些系统有共同的祖先。此外,新皮质被发现存在于早期出现的哺乳动物中,非哺乳动物拥有与哺乳动物新皮质同源的皮层区域。哺乳动物大脑的三位一体模型虽然过于简单,但由于其简单性而继续引起公众的兴趣,并且仍然是描述高级认知、社会行为和“爬行动物”行为的常用概念。这一概念已被各种著作引用,包括霍华德·布鲁姆的作品,亚瑟·科斯特勒、朱利安·巴恩斯、彼得·A·莱文和格林达·李·霍夫曼进一步探索了这一理论,他们认为前额叶皮层与大脑皮层的其他部分截然不同。一些研究人员认为,某些人的爬行动物皮层过于活跃,它控制着权力和性等本能驱动力。这可能导致冲动行为和由杏仁核驱动的恐惧反应。这个想法最初是由保罗·麦克莱恩的三重大脑理论提出的,但后来受到了最近研究的挑战。“爬行动物思维”的概念通常与大脑中一个古老的、本能的部分主导现代行为的想法有关。然而,一些专家认为这是一种过于简单的说法,大脑是一个高度适应性和动态的系统。最近的研究表明,三重大脑模型在解释人类行为方面可能不像以前认为的那样有效。相反,研究发现大脑对威胁、挑战和变化的反应具有适应性和弹性。其他专家对麦克莱恩三脑理论的相关性提出了质疑,认为该理论基于过时的大脑功能和发育模型。他们认为,需要对人类行为有更细致的理解,这种理解要考虑到个体大脑的复杂性和多变性。总体而言,“爬行动物思维”的概念仍然是神经科学和心理学领域研究人员和专家争论的话题。三脑概念已在神经科学、进化生物学和心理学等各个学科中得到广泛研究。该观点由保罗·麦克莱恩于 1973 年首次提出,认为大脑可以分为三个不同的部分:爬行动物、古哺乳动物和新哺乳动物的大脑。人们认为这些部分随着时间的推移而进化,以控制行为和认知的不同方面。最近的研究试图阐明这种三脑概念的性质及其对理解人类行为和进化的影响。 Scott Husband 和 Lubica Kubikova 等研究人员为我们理解鸟类大脑及其与脊椎动物大脑进化的关系做出了贡献(Wild 等人,2005 年)。关于该主题的另一部有影响力的作品是 Paul MacLean 的《进化中的三位一体大脑:在古脑功能中的作用》,该书探讨了三位一体大脑在控制记忆、睡眠和做梦等古脑功能方面的作用(MacLean,1990 年)。这本书还借鉴了进化生物学、神经科学和动物行为等各个领域的研究。最近的研究继续揭示大脑的进化发展及其与神经外科的关系。例如,Basma 等人(2020 年)探讨了大脑的进化与神经外科的关系,强调了理解神经回路在控制情绪和行为方面的重要性。总体而言,对三位一体大脑概念的研究对我们理解人类行为、认知和进化做出了重大贡献,并且继续成为各个学科的活跃研究领域。参考文献:Basma, J., Guley, N., Ii, LMM, et al. (2020). “与神经外科有关的大脑进化发展”。Cureus。12 (1): e6748。doi:10.7759/cureus.6748。PMC 7034762。PMID 32133270。Heimer, L., Van Hoesen, GW, Trimble, M., & Zahm, DS (2008). “三位一体大脑概念及其周围的争议”。神经心理学解剖学:基底前脑的新解剖学及其对神经精神疾病的影响。阿姆斯特丹;波士顿:Academic Press-Elsevier。第 15-16、19 页。Kral, VA,和 MacLean, PD (1973)。Paul D. MacLean 著《大脑和行为的三位一体概念》。包括《记忆心理学》和《睡眠和做梦》;VA Kral [等人] 于 1969 年 2 月在安大略省金斯顿皇后大学发表的论文。多伦多:由多伦多大学出版社为安大略省心理健康基金会出版。MacLean, PD (1985 年 4 月 1 日)。《与家庭、游戏和分离呼唤有关的大脑进化》。普通精神病学档案。42 (4):405-17。doi:10.1001/archpsyc.1985.01790270095011。PMID 3977559。MacLean, PD (1990)。三位一体大脑在进化中的作用:在古脑功能中的作用。纽约:Plenum Press。Reiner,A.(1990 年)。三位一体大脑在进化中的作用。在古脑功能中的作用。Paul D. MacLean。Plenum,纽约,1990 年。xxiv,672 页,插图。75 美元。Wild,JM、Ball,GF、Dugas-Ford,J.、Durand,SE、Hough,GE、Husband,S.,... & Yamamoto,K.(2005 年)。“鸟类大脑和对脊椎动物大脑进化的新理解”。自然评论神经科学。6 (2):151–159。doi:10.1038/nrn1606。PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调了早期经历对长期发展的影响,以及父母与婴儿之间的早期互动对塑造个人及其子女生活的重要性。C. Montag & K. Davis(《心理学》,2018 年)引入了情感神经科学人格量表的精简版来衡量主要情绪的个体差异,强调这些情绪可能源于人类人格最古老的部分,并由于它们位于古老的大脑区域而从下而上地影响它。并继续成为各个学科的活跃研究领域。参考文献:Basma, J.、Guley, N.、Ii、LMM 等人 (2020)。“与神经外科有关的大脑进化发展”。Cureus。12 (1):e6748。doi:10.7759/cureus.6748。PMC 7034762。PMID 32133270。Heimer, L.、Van Hoesen, GW、Trimble, M. 和 Zahm, DS (2008)。“三位一体大脑概念及其周围的争议”。神经心理学解剖学:基底前脑的新解剖学及其对神经精神疾病的影响。阿姆斯特丹;波士顿:Academic Press-Elsevier。第 15–16、19 页。Kral, VA, & MacLean, PD (1973)。Paul D. MacLean 著《大脑和行为的三位一体概念》。包括《记忆心理学》和《睡眠和做梦》;VA Kral [et al. Toronto] 于 1969 年 2 月在安大略省金斯顿皇后大学发表的论文:由多伦多大学出版社为安大略省心理健康基金会出版。MacLean, PD (1985 年 4 月 1 日)。《与家庭、游戏和分离呼唤有关的大脑进化》。普通精神病学档案。42 (4):405–17。doi:10.1001/archpsyc.1985.01790270095011。PMID 3977559。MacLean, PD (1990)。进化中的三位一体大脑:在古大脑功能中的作用。纽约:Plenum Press。Reiner,A.(1990 年)。进化中的三位一体大脑。在古脑功能中的作用。Paul D. MacLean。Plenum,纽约,1990 年。xxiv,672 页,插图。75 美元。Wild,JM、Ball,GF、Dugas-Ford,J.、Durand,SE、Hough,GE、Husband,S.,... & Yamamoto,K.(2005 年)。“鸟类大脑和对脊椎动物大脑进化的新理解”。自然评论神经科学。6 (2):151–159。doi:10.1038/nrn1606。PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调了早期经历对长期发展的影响,以及父母与婴儿之间的早期互动对塑造个人及其子女生活的重要性。C. Montag & K. Davis(《心理学》,2018 年)引入了情感神经科学人格量表的精简版来衡量主要情绪的个体差异,强调这些情绪可能源于人类人格最古老的部分,并由于它们位于古老的大脑区域而从下而上地影响它。并继续成为各个学科的活跃研究领域。参考文献:Basma, J.、Guley, N.、Ii、LMM 等人 (2020)。“与神经外科有关的大脑进化发展”。Cureus。12 (1):e6748。doi:10.7759/cureus.6748。PMC 7034762。PMID 32133270。Heimer, L.、Van Hoesen, GW、Trimble, M. 和 Zahm, DS (2008)。“三位一体大脑概念及其周围的争议”。神经心理学解剖学:基底前脑的新解剖学及其对神经精神疾病的影响。阿姆斯特丹;波士顿:Academic Press-Elsevier。第 15–16、19 页。Kral, VA, & MacLean, PD (1973)。Paul D. MacLean 著《大脑和行为的三位一体概念》。包括《记忆心理学》和《睡眠和做梦》;VA Kral [et al. Toronto] 于 1969 年 2 月在安大略省金斯顿皇后大学发表的论文:由多伦多大学出版社为安大略省心理健康基金会出版。MacLean, PD (1985 年 4 月 1 日)。《与家庭、游戏和分离呼唤有关的大脑进化》。普通精神病学档案。42 (4):405–17。doi:10.1001/archpsyc.1985.01790270095011。PMID 3977559。MacLean, PD (1990)。进化中的三位一体大脑:在古大脑功能中的作用。纽约:Plenum Press。Reiner,A.(1990 年)。进化中的三位一体大脑。在古脑功能中的作用。Paul D. MacLean。Plenum,纽约,1990 年。xxiv,672 页,插图。75 美元。Wild,JM、Ball,GF、Dugas-Ford,J.、Durand,SE、Hough,GE、Husband,S.,... & Yamamoto,K.(2005 年)。“鸟类大脑和对脊椎动物大脑进化的新理解”。自然评论神经科学。6 (2):151–159。doi:10.1038/nrn1606。PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调了早期经历对长期发展的影响,以及父母与婴儿之间的早期互动对塑造个人及其子女生活的重要性。C. Montag & K. Davis(《心理学》,2018 年)引入了情感神经科学人格量表的精简版来衡量主要情绪的个体差异,强调这些情绪可能源于人类人格最古老的部分,并由于它们位于古老的大脑区域而从下而上地影响它。基底前脑的新解剖结构及其对神经精神疾病的影响。阿姆斯特丹;波士顿:Academic Press-Elsevier。第 15-16、19 页。Kral, VA,和 MacLean, PD (1973)。Paul D. MacLean 的《大脑和行为的三位一体概念》。包括《记忆心理学》和《睡眠和做梦》;VA Kral [等人] 于 1969 年 2 月在安大略省金斯顿皇后大学发表的论文。多伦多:由多伦多大学出版社为安大略省心理健康基金会出版。MacLean, PD (1985 年 4 月 1 日)。《与家庭、游戏和分离呼唤有关的大脑进化》。普通精神病学档案。42 (4):405-17。doi:10.1001/archpsyc.1985.01790270095011。 PMID 3977559。MacLean, PD (1990)。进化中的三位一体大脑:在古脑功能中的作用。纽约:Plenum Press。Reiner, A. (1990)。进化中的三位一体大脑。在古脑功能中的作用。Paul D. MacLean。Plenum,纽约,1990 年。xxiv,672 页,插图。75 美元。Wild, JM、Ball, GF、Dugas-Ford, J.、Durand, SE、Hough, GE、Husband, S.、... & Yamamoto, K. (2005)。“鸟类大脑和对脊椎动物大脑进化的新理解”。自然评论神经科学。6 (2):151–159。doi:10.1038/nrn1606。 PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调早期经历对长期发展的影响以及父母与婴儿之间早期互动对塑造个人及其子女生活的重要性。C. Montag & K. Davis(心理学,2018 年)引入了情感神经科学人格量表的精简版来测量主要情绪的个体差异,强调这些情绪可能源于人类人格最古老的部分,并由于它们位于古老的大脑区域而从下而上地影响它。基底前脑的新解剖结构及其对神经精神疾病的影响。阿姆斯特丹;波士顿:Academic Press-Elsevier。第 15-16、19 页。Kral, VA,和 MacLean, PD (1973)。Paul D. MacLean 的《大脑和行为的三位一体概念》。包括《记忆心理学》和《睡眠和做梦》;VA Kral [等人] 于 1969 年 2 月在安大略省金斯顿皇后大学发表的论文。多伦多:由多伦多大学出版社为安大略省心理健康基金会出版。MacLean, PD (1985 年 4 月 1 日)。《与家庭、游戏和分离呼唤有关的大脑进化》。普通精神病学档案。42 (4):405-17。doi:10.1001/archpsyc.1985.01790270095011。 PMID 3977559。MacLean, PD (1990)。进化中的三位一体大脑:在古脑功能中的作用。纽约:Plenum Press。Reiner, A. (1990)。进化中的三位一体大脑。在古脑功能中的作用。Paul D. MacLean。Plenum,纽约,1990 年。xxiv,672 页,插图。75 美元。Wild, JM、Ball, GF、Dugas-Ford, J.、Durand, SE、Hough, GE、Husband, S.、... & Yamamoto, K. (2005)。“鸟类大脑和对脊椎动物大脑进化的新理解”。自然评论神经科学。6 (2):151–159。doi:10.1038/nrn1606。 PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调早期经历对长期发展的影响以及父母与婴儿之间早期互动对塑造个人及其子女生活的重要性。C. Montag & K. Davis(心理学,2018 年)引入了情感神经科学人格量表的精简版来测量主要情绪的个体差异,强调这些情绪可能源于人类人格最古老的部分,并由于它们位于古老的大脑区域而从下而上地影响它。Hough, GE, Husband, S., ... & Yamamoto, K. (2005)。“鸟类大脑和对脊椎动物大脑进化的新理解”。《自然评论神经科学》。6 (2): 151–159。doi:10.1038/nrn1606。PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调了早期经历对长期发展的影响以及父母与婴儿之间的早期互动对塑造个人及其子女生活的重要性。 C. Montag 和 K. Davis(心理学,2018)引入了情感神经科学人格量表的浓缩版来衡量主要情绪的个体差异,强调这些情绪可能源于人类人格中最古老的部分,并且由于它们位于古老的大脑区域,因此从下而上的角度对其产生影响。Hough, GE, Husband, S., ... & Yamamoto, K. (2005)。“鸟类大脑和对脊椎动物大脑进化的新理解”。《自然评论神经科学》。6 (2): 151–159。doi:10.1038/nrn1606。PMC 2507884。PMID 15685220。请注意,一些参考文献未包含在释义版本中,因为它们对文本的主要论点并不重要。新发现将生物学思想与精神分析原理重新联系起来,强调了早期经历对长期发展的影响以及父母与婴儿之间的早期互动对塑造个人及其子女生活的重要性。 C. Montag 和 K. Davis(心理学,2018)引入了情感神经科学人格量表的浓缩版来衡量主要情绪的个体差异,强调这些情绪可能源于人类人格中最古老的部分,并且由于它们位于古老的大脑区域,因此从下而上的角度对其产生影响。