•加利福尼亚的拍手轨道•至少贝尔的维罗伊•西部雪斑块•黄色的杜鹃•巨大的garter蛇•加利福尼亚虎sal•s salamander•delta窒息•longfin窒息•longfin绿色地面啤酒•三角洲绿啤酒•君主•爵士棕榈枝鸟的喙•索拉诺草
摘要 卷积神经网络(CNN)在图像处理领域得到了广泛的应用,基于CNN的目标检测模型,如YOLO、SSD等,已被证明是众多应用中最先进的。CNN对计算能力和内存带宽要求极高,通常需要部署到专用的硬件平台上。FPGA在可重构性和性能功耗比方面具有很大优势,是部署CNN的合适选择。本文提出了一种基于ARM+FPGA架构的带AXI总线的可重构CNN加速器。该加速器可以接收ARM发送的配置信号,通过分时方式完成不同CNN层推理时的计算。通过结合卷积和池化操作,减少卷积层和池化层的数据移动次数,减少片外内存访问次数。将浮点数转换为16位动态定点格式,提高了计算性能。我们分别在 Xilinx ZCU102 FPGA 上为 COCO 和 VOC 2007 上的 YOLOv2 和 YOLOv2 Tiny 模型实现了所提出的架构,在 300MHz 时钟频率下峰值性能达到 289GOP。
本研究探索了 YOLO v10 模型在 CT 图像中检测和分类脑肿瘤的应用。YOLO 以其实时物体检测功能而闻名,为解决医学成像挑战提供了一种有前途的方法。该研究利用 Kaggle 的脑肿瘤数据集,结合 437 张阴性图像和 488 张阳性图像进行训练,并使用其他数据集进行验证。与 AlexNet、VGG16、ResNet101V2 和 MobileNetV3-Large 等传统模型相比,YOLO v10 模型表现出了卓越的性能。它实现了 0.920 的精度、0.890 的召回率、0.900 的 F1 分数和 0.910 的准确率。这些结果凸显了它在准确识别和分类肿瘤方面的有效性,为临床应用提供了巨大的潜力。该模型的架构允许高效处理高分辨率 CT 扫描,并能很好地适应各种肿瘤大小和形状。该研究还讨论了提高不同数据集的计算效率和泛化能力所面临的挑战和未来方向。这些令人鼓舞的发现表明,YOLO v10 可以成为医学诊断的有力工具,提高肿瘤检测的准确性和速度,并有助于改善患者的治疗效果。这项研究为进一步探索和开发基于 YOLO 的医疗保健模型奠定了基础。关键词:YOLO v10、脑肿瘤检测、CT 成像、医学诊断、实时物体检测。1. 简介
摘要:这项研究是关于在Paddleocr中实施Yolo算法和机器学习的几个方面。提及讨论了这种技术集成以及他们在实现现实世界情景中完成任务和预期使用的方式。本文通过广泛分析文献并进行故意实验来实现这一目标。在本文中还捕获了有关算法有效性和挑战的见解。当代计算机视觉系统利用Yolo(您只看一次)和Paddleocr等有效的机器学习方法在几乎每个工业领域都扩展了。本文涉及这些算法在广泛的程序中的整合以及对实际领域的结果影响。本文对最新文献和实验分析进行了系统性阅读,以提出其用法的这一重要方面,未来的挑战及其前景。关键字:Yolo算法,Paddleocr,机器学习,对象检测,光学特征识别,深度学习。
免责声明这一信息是作为由美国政府机构赞助的工作的帐户准备的。美国政府或其任何机构,或其任何雇员均未对任何信息,设备,产品或过程披露或代表其使用将不会侵犯私人拥有的私有权利。参考文献以商品名称,商标,制造商或其他方式指向任何特定的商业产品,流程或服务,并不一定构成或暗示其认可,建议或受到美国政府或其任何机构的支持。本文所表达的作者的观点和观点不一定陈述或反映美国政府或其任何机构的观点和意见。
本文介绍了Yolo,这是对象检测的最佳方法。实时检测在视频监视,计算机视觉,自动驾驶和机器人操作等各个领域都起着重要作用。yolo算法由于能够通过神经网络检测一个操作中的项目,因此出现了一种良好的型和结构化解决方案,用于实时对象检测。本研究文章试图对定义的Yolo算法,其架构及其对实时对象检测的影响进行广泛的了解。该检测将通过框架对象检测到空间分离的边界框来识别为回归问题。在最佳现实世界中的识别,检测,本地化或查找广泛适用性之类的任务,使对象检测成为计算机视觉的关键细分。该算法使用卷积神经网络(CNN)实时检测对象。总的来说,本研究论文是使用您只看一次(YOLO)算法实时了解对象检测的综合指南。通过检查体系结构,变化和实现详细信息,读者可以了解Yolo的能力。
本文提出了一种使用YOLO算法估算车速的新方法。通过分析车辆沿连续线的运动,系统可以计算车辆的移动速度以及覆盖已知距离所需的时间。与基于物理数据的传统方法不同,此方法仅使用视频数据,使其无创和可用作为现有监视摄像机。Yolo附加使用或复杂安装。与传统方法相比,这种方法侧重于诸如准确性,适用性和及时性等因素。通过成功的实验,我们证明了基于YOLO的系统可以高精度估算车辆速度,并为自动驾驶汽车控制和交通管理提供了良好的解决方案。该计划还提供了一个机会,可以通过为全球交通监控提供成本效益和大规模的解决方案来改变交通监控。
针对传统的车牌识别方法精确和速度的缺陷所带来的挑战,已经引入了一种新颖的端到端深度学习模型。该模型在实际情况下采用Yolo-NAS的准确检测和识别。采用Yolo-NAS模型,我们的车牌识别方法涉及对各种数据集的全面培训,涵盖小规模,中和大尺度,以实现最佳的准确性。Yolo-Nas引入了一种创新的量化基本块,从而减轻了早期Yolo模型的关键限制。通过结合高级训练方法和训练后量化技术,进一步提高了性能。结合使用,Yolov8将车辆分类为特定类型,例如汽车或自行车。该排序算法为车辆分配了不同的身份号码,从而促进了无缝连接的相应检测到的车牌。此关联数据系统地存储在CSV文件中以供参考。为了可视化,EasyORC将部署以识别车牌上的字母数字字符。此识别输出在视觉上表示为已确定车辆上方的盒子。利用Yolo-NAS进行车牌检测,不仅可以确保卓越的准确性,而且还通过量化支持和战略准确的胶粘度权衡来优化性能,从而有助于更加精致,更有效的识别系统。我们为Yolo-NAS(小)模型获得的准确性为90.2%。使用Yolo-NAS进行车牌检测,我们能够开发一种将高速与精度相结合的模型。
“使用Yolo算法的驱动嗜睡检测系统”是一种创新的安全解决方案,旨在监视驱动程序,以实现疲劳的迹象。通过利用Yolo(您只看一次)算法(一种以其对象检测的速度和准确性而闻名的深度学习模型),该系统可以分析视频框架以检测嗜睡的迹象,从而防止驾驶员疲劳引起的事故。该系统依赖于车辆中安装的相机来捕获驾驶员的实时视频,然后由Yolo模型处理,以识别嗜睡的关键指标,例如眼球状态(闭合或闭合),面部运动(眨眼或打扰)以及头部位置(倾斜或下垂)。这些指标至关重要,因为它们可以提供早期信号,表明驾驶员可能正在疲劳。如果检测到长时间的嗜睡指标,系统会激活警报机制以通知驾驶员,该机制可能采取声音警报,视觉警告,甚至触觉反馈(如座椅振动)的形式。
工业 4.0 通过人工智能、物联网 (IoT)、云计算、信息物理系统 (CPS) 和认知计算彻底改变了制造业,创造了“智能”环境,互联的机器可以自主优化生产。这种转变显著提高了生产力和性能。然而,工业 5.0 进一步发展,强调人与机器人之间的协作,利用人类的创造力和先进的机械。它旨在提高效率并实现大规模个性化,产品可根据个人需求量身定制。工业 5.0 的核心价值是以人为本,机器处理重复性任务,人类专注于认知和批判性思维任务 [2]。一方面,根据 [3],支持以人为本的制造业人工智能的关键技术包括 i) 主动学习 (AL):人工智能系统不断从人类反馈中学习,增强人机协同作用;ii) 可解释人工智能 (XAI):确保人工智能决策透明易懂,促进信任和协作;iii) 模拟现实:使用虚拟环境模拟真实场景进行训练和决策; iv) 对话界面:实现人机之间的自然语言交互,提高可用性;v) 安全性:数字化增加了攻击面,因此需要确保数据和系统的安全。另一方面,在这种转变中,物体检测 (OD) 发挥着至关重要的作用 [4],它应用于不同的系统,例如质量控制的缺陷检测、协作机器人 (cobots)、用于码垛和自动拾取和放置系统的机械臂以及视频监控系统。此外,值得一提的是,这些系统的最新发展是基于 YOLO 检测器,以实现精度和推理速度效率的平衡 [5]。