Embotech Receives CHF 23.5 M in Funding to Expand Auton- omous Driving Solutions for Logistics in Europe and Beyond New funding from Emerald Technology Ventures, Yttrium, BMW i Ventures, Nabtesco Technology Ventures, Sustainable Forward Capital Fund, and RKK VC to support growth of logistics automation solutions Zurich, Switzerland.2024年12月12日 - Embotech是一种自动驱动解决方案的创新者,用于工业物流,在B系列资金中重新估计2350万瑞士法郎(约合2700万美元),以帮助公司扩展其自动化的车辆越野车(AVM)(AVM)(AVM)和自动型号(AVM),并且在欧洲和最终的欧洲和最终的美国和最终的美国和美国和美国的自动型号(ATT)解决方案。资金回合由Emerald Technology Ventures和YTTrium领导,BMW I Ventures,Nabtesco Technology Ventures,可持续远期资本基金,RKK VC和现有投资者提供了额外的资金。Embotech是嵌入式优化技术的缩写,已经为其在完成的车辆逻辑中的AVM解决方案及其港口和院子物流应用程序的ATT解决方案提供了具有里程碑意义的多年推出合同。为其AVM业务,Embotech已与Automaker BMW签订了一项多年合同,在2025年底之前将其解决方案安装在全球六家乘用车工厂中。随着2023年底以来的推出,Embotech的技术已经每天在最终生产中驾驶数百辆汽车,并将在2025年初每天扩展到每天数千辆汽车。该解决方案已经在宝马的Dingolfing和Leipzig植物中运营,目前涉及Regensburg。宝马预计将在未来十年与该系统登录数百万公里。到2025年底,该技术还将在南卡罗来纳州斯巴达堡的宝马工厂运营。Embotech是市场上唯一具有固定的AVM解决方案的供应商,也是唯一具有生产环境经验的玩家。新的宝马车辆沿着两个组装设施之间的一公里路线,通过吱吱作响和拨浪道的轨道和整理区域进行指导 - 在旅途的任何阶段,不需要驾驶员。Embotech AVM系统不需要对车辆的更改,并且使用现有基础架构上安装的现成的LIDAR传感器。该技术可以适用于所有车辆模型,并更换工厂布局,以适应不断增长的生产量和新的生产布局。为其ATT业务,Embotech正在为欧洲最大的港口(荷兰鹿特丹港口)的重大推出做准备,其中30辆将在未来两年内部署。电动ATTS配备了Embotech的4级AU级车辆(AV)套件,这使它们能够在混合交通情况下自主操作。Embotech的自主拖拉机使用组合
摘要:铜具有很高的热导率,是现代航空航天推进系统中热应力部件冷却的关键材料。在此类应用中使用铜材料需要材料具有很高的强度和高温稳定性,这可以通过氧化物弥散强化的概念来实现。在这项研究中,我们展示了使用激光增材制造对两种高导电沉淀强化 Cu-Cr-Nb 合金进行氧化物强化。通过在行星磨机中进行机械合金化,将气雾化的 Cu-3.3Cr-0.5Nb 和 Cu-3.3Cr-1.5Nb (wt.%) 粉末材料用 Y 2 O 3 纳米颗粒装饰,然后通过激光粉末床熔合 (L-PBF) 的激光增材制造工艺进行固结。虽然可以制造出致密的强化和非强化合金样品 (>99.5%),但氧化物弥散强化合金还表现出均匀分布的富含钇和铬的氧化物纳米颗粒,以及所有受检合金中存在的 Cr 2 Nb 沉淀物。较高的铌含量导致维氏硬度适度增加约 10 HV0.3,而均匀分散的纳米级氧化物颗粒导致材料强度与非强化合金相比显著增加约 30 HV0.3。
摘要:本文对钇铁石榴石 (Y 3 Fe 5 O 12 , YIG) 和赤铁矿 ( α -Fe 2 O 3 ) 光催化分解水的性能进行了详细的光谱和动力学比较。尽管电子结构相似,但 YIG 作为水氧化催化剂的性能明显优于赤铁矿,光电流密度提高了近一个数量级,法拉第效率提高了两倍。通过超快、表面敏感的 XUV 光谱探测电荷和自旋动力学表明,性能增强的原因在于 1) 与赤铁矿相比,YIG 中的极化子形成减少;2) YIG 中催化光电流的固有自旋极化。线性 XUV 测量表明,与赤铁矿相比,YIG 中表面电子极化子的形成显著减少,这是由于 YIG 中位点相关的电子-声子耦合在光激发时导致自旋极化电流。使用 XUV 磁圆二色性直接观察 Fe M 2 、 3 和 OL 1 边缘的表面自旋积累和化学状态分辨率,提供了自旋极化电子动力学的详细图像。总之,这些结果表明 YIG 是高效自旋选择性光催化的新平台。
采用微下拉法生长了一系列 Yb 3 + 掺杂的钇铝单斜 Y 4 Al 2 O 9 (Yb:YAM) 单晶,其中 Yb 3 + 离子浓度分别为 0.1、1、5 和 10 at.%。低温吸收测量表明 Yb 3 + 结合在几个明确的中心。位置选择性激发和发射实验可以定位系统中检测到的主要中心的基态 2 F 7/2 和 2 F 5/2 流形的能级。测量了 10 至 300 K 范围内的跃迁能量和共振跃迁线宽的温度依赖性,并且可以通过一个声子近共振过程很好地描述。还研究了 Yb 3 + 浓度对 Yb:YAM 荧光光谱结构的影响。观察到随着 Yb 3 + 浓度的增加,来自低能位点的发光占据了发射光谱的主导地位。分析了在每个位点的选择性激发下在 10 至 300 K 温度范围内记录的荧光动力学。© 2020 作者。由 Elsevier BV 出版这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
了解自旋波(SW)阻尼以及如何将其控制到能够放大SW介导的信号的点是使所设想的宏伟技术实现的关键要求之一。甚至广泛使用的磁性绝缘子在其大块中具有低磁化阻尼(例如Yttrium Iron Garnet),由于在最近的实验中观察到的,由于与金属层与金属层的不可避免接触,因此SW阻尼增加了100倍。,adv。量子技术。4,2100094(2021)]以空间解析的方式映射SW阻尼。在这里,我们使用扩展的Landau-lifshitz-gilbert方程对波矢量依赖性的SW阻尼提供了微观和严格的理解,并具有非局部阻尼张量,而不是常规的本地标量尺吉尔伯特damp,从Schwinger-keldysh norther-keldysh nortakys damper中衍生而成。在这张照片中,非局部磁化阻尼的起源以及诱导的波载体依赖性SW阻尼是磁绝缘子的局部磁矩与来自三种不同类型的金属叠层器的传导电子的局部磁矩的相互作用:正常,重型和altermagnetic。由于后两种情况下传导电子的自旋分解能量散布引起的,非局部阻尼在自旋和空间中是各向异性的,并且与正常金属覆盖物的使用相比,可以通过更改两层的相对方向来大大降低。
氢(H 2)被广泛认为对工业和运输的脱碳至关重要。由可再生电力提供动力的水电解(通常称为绿色H 2)可用于产生H 2,二氧化碳排放率低。在此,我们分析了在三种不同的假设未来需求方案下与绿色H 2产量相关的关键矿物质和能源需求,范围从100 - 1,000 MTPA H 2。在每种情况下,我们计算建造水电器所需的关键矿物质需求(即,电极和电解质),并建造专用或其他可再生电源(即,风和太阳能)为电解器供电。我们的分析表明,使用铂金属金属和稀土元素的缩放电解仪和可再生能源技术可能会面临供应限制。特定数量的灯笼,Yttrium或虹膜需要增加电解剂的能力,甚至需要更多的新近矿物质,硅,锌,钼,铝和铜,以构建专用的可再生电力源。我们发现,根据某些能源过渡模型,将绿色H 2产量满足预计的净零目标将需要约24,000 TWH的专用可再生能源产生,这大约是2050年在2050年网格上的总量。总而言之,关键的矿物约束可能会阻碍绿色H 2的缩放,以满足全球净零排放目标,从而激发了对生成H 2的替代性,低排放方法进行研究和开发的需求。
揭示了稀有地掺杂的Yttrium Iron石榴石的宽带Terahertz Faraday旋转机制Q.D.Xie,Z.C。 bin,T.Y。 Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Xie,Z.C。bin,T.Y。Zhang,M。Hu,Q.H. Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhang,M。Hu,Q.H.Yang和P.H. Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M. Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Yang和P.H.Zhou 59在细菌纤维素上直接整合氧化铁纳米颗粒,以使水中的染料降解M.L.M.Budlayan,J.N。 Patricio,D.C。Palangyos,R.A。 Guerrero和S.D. ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。 Syahrial,T.A。 Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,J.N。Patricio,D.C。Palangyos,R.A。 Guerrero和S.D.ARCO 67研究HCl预处理和K 2 FEO 4-KOH催化剂对空棕榈油水果堆的石墨化过程I. Nuriskasari的石墨化过程的影响I. Nuriskasari,A.Z.。Syahrial,T.A。Ivandini,A。Sumboja,B。Priyono和Q.Y. yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H. Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono和Q.Y.yan 75苯胺四聚体装饰氟丙烯酸酯聚合物作为高性能耐腐蚀性涂层Z.H.Shen,M.Y。 an,q.q。 Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性 Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Shen,M.Y。an,q.q。Hu和Q.小Xiao 81基于碳纳米材料的聚合物M.N.的抗反射材料的光学特性Zhukava和F.F. komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M. Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Zhukava和F.F.komarov 87自然超疏水叶上的水微颗粒及其弹性复制品M.L.M.Budlayan,D.C。Palangyos,J.N。 Patricio,S.D。 Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Budlayan,D.C。Palangyos,J.N。Patricio,S.D。Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。 Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Arco和R.A. Guerrero 95 NMC811的特征,使用稻壳衍生的二氧化硅涂料F. Angellinnov,A。Subhan,T.A。Ivandini,A。Sumboja,B。Priyono,Q.Y. Yan和A.Z. Syahrial 101Ivandini,A。Sumboja,B。Priyono,Q.Y.Yan和A.Z. Syahrial 101Yan和A.Z.Syahrial 101
0D 零维 1D 一维 2D 二维 3D 三维 AFM 原子力显微镜 AI 人工智能 AM 增材制造 AMO DOE 先进制造办公室 aPPO 无定形聚环氧丙烷 BES DOE 基础能源科学办公室 BRN 基础研究需求 CAMERA 能源研究应用高级数学中心 CT 计算机断层扫描 DFT 密度泛函理论 DOE 能源部 DPD 耗散粒子动力学 EDS 能量色散 x 射线光谱 EJ 艾焦耳 FEL 自由电子激光器 fs 飞秒 GHG 温室气体 HEDM 高能衍射显微镜 HPC 高性能计算 HTE 高通量实验 iPPO 环氧丙烷等规聚合 IR 红外 LED 发光二极管 Li 锂 MAS 魔角旋转 ML 机器学习 MOF 金属有机骨架 MS 质谱或微秒 NIST 美国国家标准与技术研究所 NOx 氮氧化物 NSLS 美国国家同步加速器光源 PCAST 总统科学技术顾问委员会 PDF 对分布函数 PRD 重点研究方向 ps 皮秒 R&D 研究与开发 s 秒 SAXS 小角度 x 射线散射 SEM 扫描电子显微镜/显微镜 SLM 选择性激光熔化 ssNMR 固态核磁共振 TEM 透射电子显微镜/显微镜 YAG 钇铝石榴石
1 普林斯顿等离子体物理实验室,美国新泽西州普林斯顿 08540 2 DECTRIS 有限公司,瑞士巴登-达特维尔 5405 3 威斯康星大学麦迪逊分校工程物理系,威斯康星州麦迪逊 53706,美国 PPPL 开发了基于 PILATUS3 X 100K-M CdTe 探测器的多能量硬 X 射线针孔相机,以安装在 WEST 托卡马克上。该相机将用于研究热等离子体特性(例如电子温度)以及非热效应(例如 LHCD 产生的快速电子尾和逃逸电子的诞生)。该系统的创新之处在于可以为探测器的每个 ~100k 像素独立设置阈值能量。此功能允许以足够的空间和时间分辨率(~1 厘米,2 毫秒)和粗能量分辨率测量多个能量范围内的 X 射线发射。在本工作中,使用钨 X 射线管和各种荧光靶(从钇到铀)的发射,在 15-100 keV 范围内校准了每个像素的能量依赖性。对于每个能量间隔,对应于 K α 发射线对的数据都与特征响应度(“S 曲线”)拟合,该响应度描述了每个像素 64 个可能的能量阈值上的探测器灵敏度;通过对每个 ~100k 像素的电荷灵敏放大器后的 6 位数模转换器的电压进行微调,可以探索这种新颖的能力。本工作介绍了校准结果,包括统计分析。结果发现,可实现的能量分辨率主要受 S 曲线宽度的限制,对于阈值能量高达 50 keV 的情况,S 曲线宽度为 3-10 keV,对于 60 keV 以上的能量,S 曲线宽度为 ≥ 20 keV。
PET 是一种强大的分子成像技术,可以提供活体物体的功能信息。然而,PET 成像的空间分辨率一直限制在 1 毫米左右,这使得难以详细可视化小鼠的大脑功能。在此,我们报告了一种我们开发的超高分辨率小动物 PET 扫描仪,它可以提供接近 0.6 毫米的分辨率,以前所未有的细节可视化小鼠的大脑功能。方法:超高分辨率小动物 PET 扫描仪内径为 52.5 毫米,轴向覆盖范围为 51.5 毫米。扫描仪由 4 个环组成,每个环有 16 个相互作用深度探测器。每个相互作用深度探测器由 3 层交错的镥钇正硅酸盐晶体阵列(间距为 1 毫米)和 4 3 4 硅光电倍增管阵列组成。物理性能根据美国国家电气制造商协会 NU4 协议进行评估。使用不同分辨率的模型评估空间分辨率。对小鼠大脑进行体内葡萄糖代谢成像。结果:峰值绝对灵敏度为 2.84%,能量窗口为 400 – 600 keV。使用迭代算法解析分辨率模型的 0.55 毫米杆结构。使用 18 F-FDG 进行小鼠体内脑成像可以清晰识别皮层、丘脑和下丘脑,而我们用于比较的商业临床前 PET 扫描仪几乎无法区分这些区域。结论:超高分辨率小动物 PET 扫描仪是一种有前途的分子成像工具,可用于使用啮齿动物模型进行神经科学研究。