摘要:在以线材为原料的各种增材制造技术中,电弧丝增材制造 (WAAM) 具有较高的材料沉积速率,但尚未在锌合金中建立应用。与传统的永久性金属生物材料相比,锌合金可用作可降解生物材料。在这项研究中,采用 WAAM 加工商用纯锌以获得近乎致密的部件,并将通过 WAAM 加工的锌获得的性能与锻造 (WR) 锌样品进行了比较。发现 WAAM (41 ± 1 HV0.3) 部件的微观结构和硬度值与 WR (35 ± 2 HV0.3) 部件的微观结构和硬度值相似。体 X 射线衍射纹理测量表明,与 WR 对应物相比,WAAM 构建物表现出重纹理微观结构,在平行于构建方向 (BD) 的方向上峰值强度约为 <3 3–6 2> 或 <0 0 0 2>。 WAAM(0.45 mmpy)和 WR(0.3 mmpy)样品在模拟体液 (SBF) 中的腐蚀速率相似。在长达 21 天的时间内,WAAM 样品在 SBF 中的重量损失测量值略高于 WR 样品。MC3T3-E1 前成骨细胞在含有 WAAM-Zn 降解产物的培养基中以类似于 WR-Zn 的方式增殖,且表现健康。这项研究证实了通过 WAAM 处理 Zn 以用于生物可吸收金属植入物的可行性。
化学蒸气沉积的CVD锌硒尼德®是首选的材料,作为在高功率CO 2激光器中用作光学成分的材料,这是由于其低散装吸收在10.6微米时。其折射均匀性和均匀性的索引提供了出色的选择性性能,可作为保护窗口或高分辨率向前外观(FLIR)热成像设备的光学元素。该材料也已用作医疗和工业应用中的小窗户和镜头,例如热元和光谱法。cvd锌硒化®是化学惰性的,非Hygromocopic,高度纯净的,理论的,易于加工。由于吸收和散射,它具有极低的体积损失,对热冲击具有很高的抵抗力,并且在几乎所有环境中都是稳定的。可以根据您的规格制作自定义直径,矩形,CNC式空白,生成的镜头空白,棱镜和近网状形状圆顶。
2.1。维生素D和肌肉功能:根据Kuroda等。(14),骨骼肌是一种异常的塑料组织,可以通过适应性适应和再生来应对压力和损伤。严重的VIT D缺乏的特征是肌肉无力(15)。长期以来,众所周知,Vit D缺乏症的特征是肌肉无力。直到最近才能很好地理解vit d对骨骼肌的精确生物分子作用(16,17)。VIT D在肌肉组织上的功能是通过在肌肉细胞中发现的受体介导的,肌肉细胞可能具有非基因组和基因组作用。1,25-二羟基VIT D [1,25(OH)(2)D]与其核受体的结合启动了基因组效应,从而导致mRNA转录和随之而来的蛋白质合成。VIT D非基因组效应很快发生,并由细胞表面受体介导(18)。肌肉
本文使用醋酸锌作为前体的SOL-GEL方法提出了纳米晶锌(ZnO)颗粒的合成。ZnO的钙化温度变化以确定其对粒径的影响。使用X射线衍射(XRD),傅立叶变换红外(FTIR),紫外线 - 可见光谱(UV-VIS)和扫描电子显微镜(SEM)表征所得的样品。纳米晶元素ZnO颗粒的含量为16 nm至30 nm。合成的氧化锌纳米颗粒的能带间隙随着钙化温度和结晶石尺寸的增加而降低。SEM显微照片显示ZnO纳米颗粒的水稻样显微结构形态。在若丹明B染料的降解中还探索了ZnO纳米颗粒作为光催化剂的使用,并特别注意粒度和催化剂负载对染料降解效率的影响。当施加0.2 g催化剂载荷时,在400 C下钙化的纳米颗粒的降解效率最高为95.41%。2019 Elsevier Ltd.保留所有权利。在国际纳米结构,纳米工程和高级材料的国际委员会科学委员会的责任下进行选择和同行审查。
开发具有更安全、更具成本效益的系统的高性能平面微电池对于为医疗植入物、微型机器人、微型传感器和物联网 (IoT) 等智能设备供电至关重要。然而,由于难以有效地将高容量活性材料加载到微电极上,目前的片上微电池在有限的设备占用空间内能量密度有限。片上微电池需要先进微电极的创新设计。这项工作引入了先进的、高度多孔的 3D 金 (Au) 支架基叉指电极 (IDE) 作为集电器,这能够有效地加载活性材料 (Zn 和聚苯胺),而不会影响整体导电性,并显著增加活性质量负载。这些基于 3D Au 支架的微电池(3D P-ZIMB)在材料加载到平面 Au IDE 上时,与传统微电池(C-ZIMB)相比,具有显著更高的能量存储性能(增强 135%)。此外,3D P-ZIMB 比大多数高性能片上微电池具有更高的面积容量(≈ 35 μ Ah cm − 2 )和面积能量(≈ 31.05 μ Wh cm − 2 ),并且它提供比高性能片上微型超级电容器高得多的面积功率(≈ 3584.35 μ W cm − 2 )。深入的事后调查显示,3D P-ZIMB 避免了材料剥落、电解质离子扩散缓慢和阳极上枝晶形成等问题,同时保持了相同的材料形貌和结构特征。因此,本研究提出了一种智能策略来提高平面微电池的电化学性能并推动片上微电池研究领域的发展。
背景:先天性心脏缺陷(CHD)是全球最常见的出生障碍之一。人类研究对锌对该人群的影响产生了不同的结果。CHD儿童经常表现出甲状旁腺功能亢进和维生素D缺乏症。目标:本研究旨在评估冠心病儿童的血清维生素D和锌的水平,并将其与对照组的血清维生素D和锌的水平进行比较。方法:在这种情况对照研究中,我们包括冠心病(n = 53)的儿童,他们于2018年6月22日至12月21日被接纳到Bandar Abbas儿童医院。该研究的纳入标准是一个月至14岁的年龄范围,并且通过超声心动图确认了CHD。还评估了一个没有CHD的对照组(n = 53)。我们从参与者那里收集了人口统计信息,并从儿童那里采集了4cc血液样本,以测量其血清D和锌的血清水平。结果:研究发现两组之间血清维生素D水平没有显着差异(P = 0.242)。然而,与对照组相比,CHD患者的平均血清锌水平显着降低,表明效果大小(SMD = -0.67,95%置信区间[CI] -1.06至-0.28)。两组之间缺乏频率和血清维生素D水平不足(分别为1.000和P = 0.767)。然而,CHD儿童患锌缺乏症的可能性是对照组的4.31倍(OR = 4.31,95%CI 1.52至13.31)。此外,仅在CHD儿童中观察到锌和维生素D水平的同时不足(P = 0.006)。结论:该研究观察到冠心病儿童的锌缺乏,而在冠心病和对照组之间血清维生素D水平的缺乏和缺乏症中没有显着差异。未来的纵向研究对于验证这些发现是必要的。
急性GVS取决于水的pH,硬度和DOC,因此作为一组方程提供(不同物种保护水平的不同方程式)。对于铜和锌,在较高浓度的DOC和硬度浓度下,GV较高。对于铜,GV在较高的pH下较高。相比之下,对于锌,GV在较高的pH下较低,尽管与
GHG协议标准建议公司考虑各种技术,例如流程细分,以最大程度地减少产品清单中分配的使用。当分配变得不可避免时,GHG协议的独立性建议公司根据产品与副产品之间的基本物理关系分配排放。应用的多输出分配遵循ISO 14044,第4.3.4.2节的要求。分配用于产生特殊高级锌产生的影响。使用浓缩物中的金属含量百分比计算浓缩物中锌和铅的分配。在冶炼过程中分配硫酸锌和净化蛋糕,铅笔和熔炉是由帝国冶炼炉,锌铸铁和锌精炼过程中产生的硬锌产生的锌,是使用金属含量百分比计算的。虽然价格分配是在钙化的锌和烤厂产生的硫酸中的。
a Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China b Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China c Environmental Energy Research Group, Research Institute for Sustainable Urban Development (RISUD), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
透明导电金属氧化物已成为研究的主题,这要归功于它们的独特物理特性以及潜在的微观和纳米电子设备和显示单元的应用。这些材料的基本实际应用是基于明显的特异性抗性和高可见的透射率。透明的金属氧化物尤其包括诸如碳锡氧化物,氧化锌,氧化镉等化合物。氧化锌半导体作为压电和光纤材料具有实用的应用潜力,可作为功能性气体传感器组件,表面声设备,透明电极和太阳能电池[1-4]。高光带隙值(〜3。3 eV在室温下)和激子结合能(约60 meV)允许将ZnO作为创建下一代紫外线光电设备和彩色显示单元的磷光器的材料。对于上面提到的许多应用,例如,通过合金来控制ZnO薄膜结构的物理参数的不稳定性是必不可少的。在这种情况下,铜合金添加剂更有效,因为铜是半导体中迅速扩散的杂质,它会导致结晶结构和物理性能的修改,例如,表面状态能量参数以及光学特性[5-7]。后者提供了有关光学主动故障的能量结构的其他信息,这具有很高的实际兴趣。这项研究的目的是研究未扎的ZnO铜掺杂(ZnO:Cu)薄膜的光光谱的行为。