量子中继器为长距离量子通信和量子互联网铺平了道路,量子中继器的概念基于纠缠交换,这需要实现受控量子门。频繁测量量子系统会影响其动态,这被称为量子芝诺效应 (QZE)。除了减缓其演化之外,QZE 还可用于通过在测量之间引入一组精心设计的操作来控制量子系统的动态。在这里,我们提出了一种基于 QZE 的纠缠交换协议,该协议几乎实现了单位保真度。我们的协议的实施只需要简单的频繁阈值测量和单粒子旋转。我们将提出的纠缠交换协议扩展到一系列中继站,以构建量子芝诺中继器,无论中继器的数量如何,这些中继器也几乎实现了单位保真度。我们的提议不需要受控门,从而降低了量子中继器的量子电路复杂性。我们的工作有可能通过量子芝诺效应为长距离量子通信和量子计算做出贡献。
物理学是一门经常基于近似的科学。从高能物理到量子世界,从相对论到热力学,近似不仅能帮助我们解运动方程,还能降低模型复杂性并集中于重要效应。这种近似的最大成功案例之一是有效的动力学生成器(哈密顿量、林德布拉量),它们可以在量子力学和凝聚态物理学中推导出来。用于推导它们的技术的关键要素是分离不同的时间尺度或能量尺度。最近,在量子技术中,人们采取了一种更积极的方法研究凝聚态物理学和量子力学。通过调整系统参数和设备设计可以逆向设计动力学生成器。这使得我们可以创建有效的生成器,用于许多信息论任务,例如绝热量子计算[1]、油藏工程[2]、量子门[3]等等。绝热量子定理[4,5]是此类近似的关键因素。它利用了慢时间尺度和快时间尺度的明确分离,由于其简单性、优美性和有趣的几何解释,吸引了一代又一代的物理学家。绝热量子定理最初的表述与动力学生成器有关。另一方面,在量子技术中,我们经常处理离散动力学,如固定门和量子映射。在连续描述和离散描述之间进行转换并不总是很简单,有时似乎是不可能的。这种困难在非马尔可夫量子信道中表现得更加明显:这些是物理操作[完全正和迹保持(CPTP)映射[6]],没有物理(例如林德布拉)生成器[非马尔可夫量子信道不能通过
不当处置 如果产品处置不当,可能会发生以下情况: • 如果聚合物部件燃烧,会产生有毒气体,可能损害健康。• 如果电池损坏或强烈加热,可能会爆炸并导致中毒、燃烧、腐蚀或环境污染。• 如果不负责任地处置产品,您可能会让未经授权的人员违反规定使用它,使他们自己和第三方面临严重受伤的风险,并使环境容易受到污染。预防措施: ▶ 不得将产品与家庭垃圾一起处理。根据您所在国家/地区现行的国家法规适当处置产品。始终防止未经授权的人员接触产品。
由于人力短缺和降低全寿命成本的愿望,减少人员配备一直是海军的愿望,而随着军事行动的发展,对能够执行任务、高效和灵活的舰船的要求也不断增长。行业面临的挑战是提供具有更高能力和灵活性的海军平台,同时采用足够的自动化来支持减少的人员配备。集成平台管理系统可以解决精益人员配备平台带来的许多挑战。然而,要充分利用这种系统的优势,必须充分考虑操作员特性和支持技术。在集成平台管理系统设计方面,真正的分布式架构、广泛的系统集成、直观的警报和警告策略以及包含寻呼系统的远程警报面板都可以帮助应对减少人员配备的挑战。随着技术的发展,优化船舶运营和开发新方法实现任务目标的能力也将随之发展,同时应对减少人员配备的挑战。目前,有许多主题推动着海事市场的创新,例如在商业海事领域最为普遍的远程支持计划。此外,在人员配备水平不断降低的背景下,采用智能阀门等智能系统可以带来显著的效益。
对于美国国防部 (DoD) 来说,他们关心的是尽量减少士兵/水兵/飞行员/海军陆战队员接触枯燥、肮脏或危险的任务。枯燥的任务会消耗人的注意力,容易疲劳,需要长时间保持警惕。一个不会感到疲倦、沮丧或无聊的实体更适合执行这个任务,它会在出击 20 分钟或 20 小时后做出“正确”的决定。肮脏的任务涉及接触不健康的环境条件,例如烟雾、有毒物质、传染性生物材料或辐射。对此类条件不敏感的实体可以在较少的暴露时间限制下执行此类任务。减轻对我们部队的风险也是标准的国防关注点 - 如果大规模生产的自动化系统可以同样有效地完成工作,那么派遣人员进入危险区域是没有意义的。
航空电子全双工交换以太网 (AFDX) 是 ARINC 664 飞机数据网络第 7 部分中指定的一种光纤航空电子总线规范,用于空客 A380、波音 787 等飞机。它被设计为标准以太网协议的升级,增加了有保证的确定性以及有界的抖动和延迟。这样做是为了让硬实时关键系统使用标准 IEEE 802.3 以太网协议进行通信。它使用双冗余和全双工链路来最大限度地减少抖动和延迟并消除数据包冲突。尽管 AFDX 在设计时考虑了硬实时系统,但它尚未用于安全关键型飞行控制系统。空客已表示有兴趣将 AFDX 的使用范围从任务关键型系统扩展到飞行关键型系统 [1] 。与 MIL STD 1553 和 ARINC 429 (A429) 等传统系统相比,在飞行控制系统中使用 AFDX 可以带来许多好处。确实存在其他光纤总线,包括 MIL STD 1773、ARINC 629、ARINC 636 和光纤通道,但这些总线目前不用于飞行控制,并且与这些总线的比较超出了本研究的范围。
FAA 飞机系统网络安全活动 FAA 法规、标准和指导并未解决网络安全漏洞问题。FAA 已为多种飞机和系统制定并发布了特殊条件。 针对网络安全漏洞实施特殊条件的原因如下: - 当当前 FAA 法规没有包含足够或适当的飞机系统保护和安全安全标准时,可发布特殊条件。 - 包含 FAA 管理员认为建立同等安全水平所必需的其他安全标准。 - 针对特定飞机型号发布。 - 解决新的或新颖的设计特点。 - 在《联邦公报》上公布以征询公众意见 FAA 参与 RTCA SC-216 航空系统安全。RTCA, Inc. 是一家私营非营利性公司,负责制定有关通信、导航、监视和空中交通管理 (CNS/ATM) 系统问题的基于共识的建议。RTCA 充当联邦咨询委员会的角色。其建议被美国联邦航空管理局 (FAA) 用作政策、计划和监管决策的基础,并被私营部门用作开发、投资和其他商业决策的基础。RTCA SC-
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。
数字航空电子是航空技术团队中最年轻、最新的成员,该团队已经包括空气动力学、结构、材料和推进技术。与太空时代一样,数字航空电子也有大约四分之一世纪的历史。从默默无闻的开始,不到 25 年的时间,数字航空电子就已成为航空领域的一支主要力量。总的来说,数字航空电子的进步与微电子的进步同步。计算能力的爆炸式增长以及重量、功率和相对成本的急剧、前所未有的下降,特别是在过去十年,促进了电子设备应用于以前从未梦想过的航空任务。与计算能力的增长同时出现的是同样重要的高度通用的电子显示器和输入/输出设备的出现。