I.引入人类生理学,保持电解质平衡对于一系列关键功能,包括神经信号传导,肌肉收缩和流体平衡至关重要。1个电解质,例如钠,钾,钙,镁和氯化物在维持这些生理过程中起着不可或缺的作用。1然而,感染,胃肠道疾病和脱水等因素会破坏电解质水平,从而导致潜在的严重健康后果,例如心律不齐,肌肉无力,神经系统症状,甚至危及生命的并发症。2口服补液溶液(ORS)通常建议快速补充流体和通过腹泻等条件损失的基本矿物质,这仍然是全球发病率和死亡率的重要原因,尤其是在发展中国家。2
2.1。维生素D和肌肉功能:根据Kuroda等。(14),骨骼肌是一种异常的塑料组织,可以通过适应性适应和再生来应对压力和损伤。严重的VIT D缺乏的特征是肌肉无力(15)。长期以来,众所周知,Vit D缺乏症的特征是肌肉无力。直到最近才能很好地理解vit d对骨骼肌的精确生物分子作用(16,17)。VIT D在肌肉组织上的功能是通过在肌肉细胞中发现的受体介导的,肌肉细胞可能具有非基因组和基因组作用。1,25-二羟基VIT D [1,25(OH)(2)D]与其核受体的结合启动了基因组效应,从而导致mRNA转录和随之而来的蛋白质合成。VIT D非基因组效应很快发生,并由细胞表面受体介导(18)。肌肉
Zinc(Ⅱ) can prevent on pre-stage, mild cognitive impairment (MCI) and pathological AD for AD MCI and prevention that an- tibodies prevent MCI, zinc homeostasis, ZnCl2, zinc transporter (ZnT) prevent MCI and AD, ZnT-6 prevents MCI and AD that ZnT-6 is a likely site of Aβ generation through cleavage of amy- loid precursor protein (APP)和用锌 - 金甲肽酶降解酶(IDE)可预防AD。清除率和裂解阶段涉及MMP-2,MMP-2,MMP-2,MMP-2,MMP-3,CAN CAN属于MMP-2,MMP-2,MMP-2,MMP-2,MMP-2,MMP-2,MMP-2,MMP-2,MMP-3,属于Zinc-9)可以降解MMPS,MMP2,MMP9 MMPS,MMP2,MMP9)涉及ADAβ肽聚集阶段。淀粉样β蛋白质清除和降解(ABCD)和具有锌烯型肽酶的胰岛素降解酶(IDE)可以切割多种小肽。清除率和裂解阶段涉及锌指蛋白,锌指蛋白转录因子(ZFP-TFS)可以减少tau的持续抑制作用。生物活性化合物清除,锌-BDNF剥夺会引起AEP的影响和切割tau,并且可以在tau蛋白中切割锌离子。取决于ADAβ毒性的清除和切割阶段,涉及锌金属蛋白酶酶,可以在Aβ和TAU上裂解锌金属蛋白酶酶,膳食生物活性化合物,锌 - 米克罗糖酸锌和tau,通过Aβ和TAU清除和abeave cleaveance和debevenance和taus neb s cleaine s Agrance shep and n s Agn s Agrance shecance shep s Agn and s rep shep s rep shecance。 锌(ⅱ)结合清除和的分子机制取决于ADAβ毒性的清除和切割阶段,涉及锌金属蛋白酶酶,可以在Aβ和TAU上裂解锌金属蛋白酶酶,膳食生物活性化合物,锌 - 米克罗糖酸锌和tau,通过Aβ和TAU清除和abeave cleaveance和debevenance和taus neb s cleaine s Agrance shep and n s Agn s Agrance shecance shep s Agn and s rep shep s rep shecance。锌(ⅱ)结合清除和锌诱导的有毒反应氧(ROS)产生导致过度磷酸的TAU损害和氧化应激增加,以引起TAU高磷酸化并加剧神经元死亡。锌诱导的有毒反应氧(ROS)产生导致过度磷酸的TAU损害和氧化应激增加,以引起TAU高磷酸化并加剧神经元死亡。
摘要 目的 钛 6 铝 4 钒 (Ti-6Al-4V) 合金具有良好的生物相容性、优异的机械性能和卓越的耐腐蚀性,常用于医疗和正畸目的,作为主动正畸治疗后的固定保持器。钛缺乏抗菌特性且具有生物惰性,这可能会影响此类材料在生物医学应用领域的使用。细菌粘附在正畸保持器表面是感染的常见第一步;接着是细菌定植,最后形成生物膜。一旦生物膜形成,它对药物和宿主免疫系统的防御机制具有很强的抵抗力,因此很难从正畸保持器中去除生物膜。本研究旨在测试氧化锌 (ZnO) 纳米颗粒涂层对 Ti-6Al-4V 正畸保持器上的抗菌作用。材料与方法采用电泳沉积法将粒径为10至30nm的ZnO纳米粒子涂覆在合金上。采用各种参数和表面特性测试来获得优化样品。对该样品进行微生物粘附光密度测试以检查变形链球菌、嗜酸乳杆菌和白色念珠菌的粘附。结果优化样品的ZnO浓度为5mg / L,施加电压为50 V,电极间距离为1 cm。与未涂层样品相比,ZnO涂层显著降低了微生物粘附,有效抑制了细菌生长。
光伏与材料技术系杰出研究员 • 专注于材料化学、能源研发 • 储能材料推进负责人 • PI 锌基电池项目 • PI SI-3020 FOA LDES 锌项目 • 与 CCNY、UKentucky、GTech、Northeastern、Stony Brook、NMSU、UEP 合作 • PI 锂金属/转换阴极电池 • 综合纳米技术中心、DOE-BES 附属机构 • NAATBatt 国际锌电池委员会成员 • > 100 篇同行评审论文的合著者 • 鹰级童子军
其电气和光学特性特性,ZnO,一种宽阔的直脉冲氧化物半导体,对电气,光学和信息技术设备的使用平台具有巨大的希望(Schuler and Aegerter 1999)(Sahay and Nath 2008)。通过当代固态技术采用的无形导电氧化物,包括反映热量,太阳能电池板和传感器以及光学电子产品的镜子,已成功地掺入了氧化锌(ZnO)薄膜(O'Brien,Nolan等人2010)。TCO在可见范围内应具有很高的光学透明度和强电导率。由于其强大的电导率和对可见光,ITO或最常见的氧化二锡氧化物的出色透明度,广泛使用的TCO(Srivastava and Kumar 2013)。在紫外线辐射下,ZnO薄膜晶体管(Tiginyanu,Ghimpu等人。2016)。
开发具有更安全、更具成本效益的系统的高性能平面微电池对于为医疗植入物、微型机器人、微型传感器和物联网 (IoT) 等智能设备供电至关重要。然而,由于难以有效地将高容量活性材料加载到微电极上,目前的片上微电池在有限的设备占用空间内能量密度有限。片上微电池需要先进微电极的创新设计。这项工作引入了先进的、高度多孔的 3D 金 (Au) 支架基叉指电极 (IDE) 作为集电器,这能够有效地加载活性材料 (Zn 和聚苯胺),而不会影响整体导电性,并显著增加活性质量负载。这些基于 3D Au 支架的微电池(3D P-ZIMB)在材料加载到平面 Au IDE 上时,与传统微电池(C-ZIMB)相比,具有显著更高的能量存储性能(增强 135%)。此外,3D P-ZIMB 比大多数高性能片上微电池具有更高的面积容量(≈ 35 μ Ah cm − 2 )和面积能量(≈ 31.05 μ Wh cm − 2 ),并且它提供比高性能片上微型超级电容器高得多的面积功率(≈ 3584.35 μ W cm − 2 )。深入的事后调查显示,3D P-ZIMB 避免了材料剥落、电解质离子扩散缓慢和阳极上枝晶形成等问题,同时保持了相同的材料形貌和结构特征。因此,本研究提出了一种智能策略来提高平面微电池的电化学性能并推动片上微电池研究领域的发展。