[Yadav等。al,nat。公社。8,14424(2017); J.mater。化学。A 5,15845(2017);母校。能源6,198(2017);他们。J.能源氢43,8480(2018); Gallaway等。al。,J。Electrochem。Soc。165,A2935(2018)]165,A2935(2018)]
摘要:ZnO由于其高灵敏度和快速响应而对化学传感器进行了深入研究。在这里,我们提出了一种简单的方法,可以精确控制氧气空位含量,以提供商业ZnO纳米植物的丙酮感应性能的显着增强。H 2 O 2处理和热退火的组合可在ZnO纳米颗粒(NPS)上产生最佳的表面缺陷。在400的最佳工作温度下,在0.125 m H 2 O 2中,在0.125 m H 2 O 2中获得了〜27,562的最高响应,在400的最佳工作温度下,基于金属氧化物半管子(MOSS)的各种丙酮传感器中,在各种丙酮传感器中,该ZnO NP的最高响应。此外,第一原理的计算表明,在H 2 O 2处理的ZnO NP的表面上形成的预称o可以提供有利的吸附能,尤其是对于丙酮检测,由于丙酮分子和Zno表面的丙酮和预测o之间的carbonyl C原子之间的强烈双态粘结。我们的研究表明,通过H 2 O 2处理控制表面氧空位并在最佳温度下重新拨动是一种有效的方法,可以提高商业MOS材料的感应特性。关键字:气体传感器;丙酮;金属氧化物半导体(MOSS); ZnO纳米颗粒(NPS); H 2 O 2
引言Ca 2+对于心脏电导传导和收缩至关重要(1,2)。虽然激发反应耦合触发了Ca 2+从肌浆网(SR)释放到通过Ryanodine receptors(Ryrs)到细胞质的,但SR Ca 2+将Ca 2+摄入Ca 2+在很大程度上由SR Ca 2+ -Atpase 2A(Serca 2a(Serca2a)(2,2,2,2,3)。在SR中,Ca 2+由最丰富的Ca 2+结合蛋白(Calsequestrin 2(Casq2)(4)保留。casq1与CASQ2高度同源,这两种蛋白质的作用类似于调节肌肉细胞中Ca 2+的稳态(5)。尽管CASQ1和CASQ2都存在于骨骼肌中,但仅在心肌细胞中发现CASQ2。小鼠遗传学研究表明,尽管SR Ca 2+稳态调节受到破坏,但CASQ1或CASQ2的丧失未能引起致命性心肌病(5)。相反,心肌细胞中具有CASQ2过表达的转基因小鼠患有严重的心肌病,并在16周的时间内过早死亡(6,7)。液泡心肌病是一种罕见但致命的心脏病,具有肌纤维中突出液泡的特征。它通常与溶酶体功能性缺陷有关,包括储存障碍(即富含酸α-葡萄糖苷酶缺乏症)和蛋白质缺乏症(即,Danon疾病,由LAMP2缺乏症引起)(8-10)。然而,经常观察到非散糖体相关的液泡心脏病,其发病机理需要研究(11,12)。染色质复制复合物调节大量基因表达(13)。以前,有报道称SWI/SNF染色质复合物调节心脏发育和产后心脏的生长(14)。例如,SWI/SNF染色质重塑剂的核心成分BRG1促进胚胎心肌细胞增殖并保留心脏分化(15)。在成年小鼠中,心脏应激激活的BRG1诱导病理α -MHC到β -MHC转移,导致肥大(15)。除了SWI/SNF染色质复合物复合物外,哺乳动物还存在其他3种其他染色质重塑剂(ISWI,NURD和INO80/SWR复合物)(13)。但是,与SWI/SNF复合物相比,这3种染色质复合物在产后心脏中的功能仍然未知。含锌手指命中域 - 含有含蛋白的蛋白1(Znhit1;补充表1;本文在线提供的补充材料; https://doi.org/10.1172/jci.insight.1487752ds1),是一个键
摘要:门控ZnO纳米线场发射阵列在平板X射线源、光电探测器等大面积真空微电子器件中有着重要的应用。由于应用需要高像素密度的场发射阵列,因此需要研究像素密度对门控ZnO纳米线场发射性能的影响。本文模拟了在保持横向几何参数成比例的情况下不同像素尺寸下同轴平面门控ZnO纳米线场发射阵列的性能,获得了发射电流和栅极调制随像素尺寸的变化曲线。利用所获得的器件参数,制备了同轴平面门控ZnO纳米线场发射阵列。场发射测量结果表明,当栅极电压为140 V时,制备的ZnO纳米线场发射阵列的电流密度为3.2 mA/cm 2,跨导为253 nS,表明栅极控制有效。性能的提高归因于优化的栅极调制。
我们展示了如何同时控制 ZnO 薄膜的电和热传输特性,该薄膜是通过原型原子层沉积 (ALD) 工艺从二乙基锌 (DEZ) 和水前体制备的。关键的 ALD 工艺参数是在 DEZ 前体脉冲之后施加的 N 2 吹扫时间。我们利用 X 射线反射率测量来表征薄膜的生长特性,利用光致发光光谱来表征结构缺陷,利用电传输测量来表征载流子密度、电阻率和塞贝克系数,利用时域热反射测量来表征热导率。光致发光光谱数据表明,延长吹扫时间会产生结构缺陷,从而增加电子载流子密度;这可以解释薄膜电导率增强的原因。同时,缺陷可能会阻碍薄膜中的热传输。因此,实现电导率的同时增加和热导率的降低对热电学至关重要。此外,在光学和微电子领域中,人们非常希望对半导体 ZnO 薄膜的本征电传输特性进行简单的控制。
在这项工作中,ZnO纳米颗粒(NP)成功合成并涂有油酸(OA)。这些NP(ZnO-OA)的平均直径约为11.5 nm,其核心的特征是XRD和FTIR和Raman的涂层。在不同浓度(0.10、0.25、0.50、0.75和1.00 wt%)的ZnO-OA的均匀分散体中,在嗜热物上是嗜热物,并在逻辑上表征了油。随着NP的浓度,密度和粘度值都增加,对于1 wt%纳米分散,相对增量分别为0.5%和4.0%。使用配备有摩擦学球的三针配置测试模块的Anton Paar MCR 302节省仪,在353.15 K下进行摩擦学测试。关于摩擦学行为,最佳浓度占ZnO-OA的0.25 wt%(摩擦系数减少的25%,横截面面积减少了82%,相对于用纯基碱基获得的磨损)。滚动机制由于纳米辅助作用的球形形状,将滑动摩擦转化为滚动摩擦,并且修补效果可以解释纳米化剂相对于纯PAO40的摩擦学性能更好。此外,在与Pao40 + 0的摩擦学测试中获得的共聚焦拉曼显微镜证明了PAO40,ZnO-OA NP和铁氧化物的存在。25 wt%ZnO-OA分散。 2021作者。 由Elsevier B.V. 发布 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。25 wt%ZnO-OA分散。2021作者。由Elsevier B.V.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
因此,对于应用而言,非常需要一种带隙与 β -Ga 2 O 3 一样宽但对称性更高的材料。最近,Galazka 等人报道了块体熔融生长的高结构质量 ZnGa 2 O 4 (ZGO) 单晶,可由其制备不同取向的绝缘和半导体晶片。[11,12] ZGO 结晶为立方尖晶石结构(Fd3m 空间群),如图 1 中的球棒模型所示。尖晶石是指一类化学式为 AB 2 X 4 的化合物,其中 A 是二价阳离子,如 Zn,B 是三价阳离子,如 Ga,X 是二价阴离子,如 O。在 ZGO 的正常尖晶石结构中,Zn 占据四面体位置,而 Ga 占据八面体位置。在高温熔体生长过程中,八面体和四面体位置的占据是随机的。[11] 长时间冷却可稳定正常尖晶石结构,而较短的冷却时间会引入反位缺陷。反位缺陷导致 n 型导电性,自由电子浓度在 10 18 – 10 19 cm 3 的数量级上。在氧化气氛中以 800 – 1400 C 的温度进行 10 小时的生长后退火或在 700 C 的温度进行 40 小时的生长后退火后,ZGO 晶体可转变为绝缘状态。[11 – 13] 由于其立方尖晶石结构,ZGO 具有各向同性的热性能和光学性能。发现 ZGO 的光学带隙为 4.6 eV,接近 β -Ga 2 O 3 的光学带隙,并且没有观察到优选的解理面。[11,12]
然而,V x o y阴极的商业应用仍然受到限制,主要是因为该材料是在其充电状态下合成的(即没有互插离子的来源:LI,Na,Zn和Mg)和毒性。为了解决以前的化学插入,已经研究了将离子源插入V x o宿主材料中,包括Li X-,Na X-,Zn X - 和Mg X -V Y O Z。[24–30]插量离子不仅充当层中的支柱,以防止结构变形,而且还增加了层中离子源的量。先前的评论论文全面报道了基于V X O Y的材料的特征,并总结了其作为在LIBS,NIBS,ZIB和MIBS中用作阴极的电化学性能。[12,13,25,26]然而,要详细了解储能机制是很有吸引力的,因为它们在充电和电荷过程中监测实时反应,因此详细了解储能机制是有吸引力的。在这里,“原位”是指“在现场或反应物内部”,而“ Operando”是指“在工作或操作条件下”,但是这些术语通常在文献中互换。更普遍地说,“原位/操作分析”用于描述实时电化学操作下的电化学分析。[31–34]
Zn 1-X CO X O(0≤x≤0.10)纳米粒子通过球磨制过程成功制造。使用X射线衍射,X射线(EDX),扫描电子显微镜(SEM)检查了[CO]/[Zn]对纳米粒子特性的影响,这些测量结果表现出生长六边形Wurtzagonal wurtzagonal wurtzagonal wurtzato wurtzate Zn 1-x o x o x o x o x o nano partiate co +2 co +2成功地组合了Zn Zn ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN ZN CO +2成功地组合了Zn Zn Zn Zn Zn Zn Zn Zn Zn Zn co +2。使用紫外线可见的(UV)吸收光谱研究了Zn 1-X CO X O纳米粒子的光学表征是指光频段中的红移,并且在ZnO矩阵内增加了COION,此结果证实,随着CO的增加,频带gab grake cop narrow缩小了CO的比率。应用振动样品磁力计的磁化测量值在共掺杂的ZnO纳米粒子中说明了磁滞回路。多亏了bandgap e g
受二嵌段共聚物 (DBC) 丰富的相分离行为启发,二嵌段共聚物 (DBC) 和无机前体的协同自组装 (共组装) 可以实现具有所需尺寸的多种功能纳米结构。在采用聚苯乙烯嵌段聚氧化乙烯和 ZnO 的 DBC 辅助溶胶-凝胶化学方法中,通过狭缝模头涂层形成混合薄膜。打印纯 DBC 薄膜作为对照。进行原位掠入射小角度 X 射线散射测量,以研究薄膜形成过程中的自组装和共组装过程。结合互补的非原位表征,区分出几种不同的方式以描述从最初的溶剂分散到最终固化的薄膜的形态转变。组装途径的比较表明,建立纯 DBC 薄膜的关键步骤是球形胶束向圆柱形域的聚结。由于存在相选择性前体,溶液中圆柱形聚集体的形成对于混合膜的结构发展至关重要。墨水中预先存在的圆柱体阻碍了混合膜在随后的干燥过程中的域生长。前体降低了有序度,防止了 PEO 嵌段的结晶,并在混合膜中引入了额外的长度尺度。