摘要:采用基于密度泛函理论(DFT)结合LDA+U算法的第一性原理计算方法,研究了Co/Mn共掺杂ZnO纳米线的电子结构与磁性能,重点研究了Co/Mn原子的最佳几何置换位置、耦合机制和磁性来源。模拟数据表明,所有构型的Co/Mn共掺杂ZnO纳米线都表现出铁磁性,并且Co/Mn原子取代(0001)内层中的Zn使纳米线进入基态。在磁耦合态,在费米能级附近检测到明显的自旋分裂,并且Co/Mn 3d态与O 2p态之间观察到强烈的杂化效应。此外,建立了形成Co 2+ -O 2 − -Mn 2+磁路的铁磁有序结构。此外,计算结果表明磁矩主要来源于Co/Mn的3d轨道电子,磁矩的大小与Co/Mn原子的电子结构有关。因此,通过LDA+U方法获得了Co/Mn共掺杂ZnO纳米线电子结构的真实描述,展示了其作为稀磁半导体材料的潜力。
由未基因的活性成分,BAO和同事引起的不受欢迎的免疫反应设计了完全可生物降解的半导体聚合物,用于瞬态电子产品,通过将可逆的酸氨基氨基键键合成二甲苯吡咯洛洛 - 吡咯 - 基于吡咯 - 基于基于pymine的聚合物的抗二吡罗洛 - 吡咯的聚合物,在该聚合物中,在该蛋白水解中。14,15他们进一步研究了侧链对不同溶剂的降解寿命的影响。16然而,沿聚合物主链的水解裂解化学代表了在共轭长度的主要挑战中,即储能容量。更重要的是,这些共轭聚合物的低电导率显着限制了电池中的实际应用,在这些电池中,非常需要快速的再拨动稳定性和高循环稳定性。迫切需要一种具有完整生物降解和高循环稳定性的合理定制的可生物降解的导电聚合物,以实现可生物降解的可充电电池。在这里,我们通过采用生物吸附化学提出了一种生物相容性的,完全侵蚀的PEDOT衍生化学(图1)通过化学和电化学途径。用磺酸盐和羧基的PEDOT共价束缚,赋予聚合物具有水的溶解度和湿加工能力。17为了控制生物侵蚀速率,将乙醚间隔物与酸基团相关,以降低水溶性。19电聚合lm,消除了对导电添加剂的需求,与Zn阳极相结合时,可以提供高容量,出色的速率和循环性能。18与聚合物主链的水解切解连接相比,可电离和/或可水解的羧酸吊坠的侧链工程同时允许储存和调节磁性动力学动力学,而不会损害电子特性。该电池通过一系列代谢和水解反应在体内完全消失,其生物相容性通过活细胞成像和组织学分析证明。这项工作为生物相容性且完全可侵蚀的导电聚合物的分子工程提供了新的途径,以提供船上的能源供应。
摘要基于Zn的电化学被认为是锂离子电池的最有希望的替代品,由于其丰富的储量和成本效益。此外,由于其与Zn化学的良好兼容性,因此在基于Zn的电池中使用水性电解质更方便,从而降低了成本并提高了安全性。此外,Zn 2+ /Zn夫妇涉及两电子氧化还原化学,可以提供更高的理论能量容量和能量密度。基于此,包括Zn-ION电池,Zn-Air电池和基于Zn的氧化还原流量电池在内的一系列基于Zn的电池系统已受到越来越多的研究关注。在这里,提出了基于Zn的可充电电池的基本原理和最新进展,以及进一步的研究方向的观点。
胆固醇,27岁和酰胺28在凝胶的化学中是一般的,利用LMWGS实现了必要的和有效的合成,仍然很不错。与超分子凝胶化过程的演示一起,凝胶研究29中的当前方向是金属离子以及LMWGS以及用于形成多功能超分子抗凝胶的LMWG。低分子量的多种金属离子和有机成分的组合结合在一起,以产生具有独特的自我聚集机制和非共价特征的母凝度,从而导致在科学和技术领域发展更具吸引力和出色的特性。Supramolecular metallogels have signi cant applications in a wide range elds of materials science, including the food industry, cosmetics, electron emission, photophysics, logic gates, drug delivery, cell culturing, biomineralization, medical diagnostics, tissue engineering, lithography, optical activity, energy storage, charge transportation, catalysis, conductivity, actuators, magnetic materials, redox responsive- ness,化学传感器,电化学和光电设备,纳米科学和纳米电子学等30 - 49
胆固醇 27 和酰胺 28 在凝胶化学中很常见,利用 LMWG 实现必要且有效的合成仍然很困难。随着超分子凝胶化过程的演示,凝胶研究的当前方向 29 是将金属离子与 LMWG 一起引入,以形成多功能超分子金属凝胶。多种金属离子和低分子量有机组分的组合相结合,可生成具有不同自聚集机制和非共价特性的金属同质凝胶,从而导致在科学和技术领域开发出更引人注目和卓越的特性。超分子金属凝胶在材料科学的众多领域有着重要的应用,包括食品工业、化妆品、电子发射、光物理、逻辑门、药物输送、细胞培养、生物矿化、医学诊断、组织工程、光刻、光学活性、能量存储、电荷传输、催化、导电性、执行器、磁性材料、氧化还原响应、化学传感器、电化学和光电器件、纳米科学和纳米电子学等。30 – 49
更正为:时效处理后 Al-Zn-Mg-Cu 铝合金中新 (Al, Zn) 3 Zr 沉淀物的形成及其对动态压缩的响应
本报告是由美国政府某个机构资助的工作报告。美国政府或其任何机构、其雇员、承包商、分包商或其雇员均不对所披露信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用结果做任何明示或暗示的保证,或承担任何法律责任或义务,或表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
完整作者名单: Muthaiah, Rajmohan;俄克拉荷马大学,航空航天与机械工程学院 Annam, Roshan Sameer;俄克拉荷马大学,航空航天与机械工程学院 Tarannum, Fatema;俄克拉荷马大学,航空航天与机械工程学院 Gupta, Ashish;俄克拉荷马州立大学 Garg, Jivtesh;俄克拉荷马大学,航空航天与机械工程学院 Arafin, Shamsul;俄亥俄州立大学,电气与计算机工程学院